Michele De Sanctis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5879758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
2	European Vegetation Archive (EVA): an integrated database of European vegetation plots. Applied Vegetation Science, 2016, 19, 173-180.	1.9	247
3	Topographyâ€driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 2016, 25, 1097-1107.	5.8	243
4	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185
5	Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. International Journal of Climatology, 2007, 27, 1825-1843.	3.5	142
6	Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Applied Vegetation Science, 2011, 14, 242-255.	1.9	62
7	Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 2021, 30, 1218-1231.	5.8	59
8	VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosystems, 2012, 146, 756-763.	1.6	52
9	Interregional variation in the floristic recovery of postâ€agricultural forests. Journal of Ecology, 2011, 99, 600-609.	4.0	50
10	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
11	Classification and distribution patterns of plant communities on <scp>S</scp> ocotra <scp>I</scp> sland, <scp>Y</scp> emen. Applied Vegetation Science, 2013, 16, 148-165.	1.9	40
12	Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.	5.8	40
13	Developing conservation strategies for endemic tree species when faced with time and data constraints: Boswellia spp. on Socotra (Yemen). Biodiversity and Conservation, 2011, 20, 1483-1499.	2.6	34
14	A methodological approach for assessing the effects of disturbance factors on the conservation status of Mediterranean coastal dune systems. Applied Vegetation Science, 2013, 16, 333-342.	1.9	31
15	Effects of habitat configuration and quality on species richness and distribution in fragmented forest patches near Rome. Journal of Vegetation Science, 2010, 21, 55-65.	2.2	30
16	The relationship between niche breadth and range size of beech (<i>Fagus</i>) species worldwide. Journal of Biogeography, 2021, 48, 1240-1253.	3.0	25
17	Distribution maps of vegetation alliances in Europe. Applied Vegetation Science, 2022, 25,	1.9	23
18	The use of spatial ecological modelling as a tool for improving the assessment of geographic range size of threatened species, Journal for Nature Conservation, 2013, 21, 48-55.	1.8	22

MICHELE DE SANCTIS

#	Article	IF	CITATIONS
19	Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen). Journal of Applied Remote Sensing, 2013, 7, 073527.	1.3	22
20	Modelling the spatial distribution of tree species with fragmented populations from abundance data. Community Ecology, 2009, 10, 215-224.	0.9	21
21	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	5.8	21
22	How to include the impact of climate change in the extinction risk assessment of policy plant species?. Journal for Nature Conservation, 2018, 44, 43-49.	1.8	19
23	Classifying and Mapping Potential Distribution of Forest Types Using a Finite Mixture Model. Folia Geobotanica, 2014, 49, 313-335.	0.9	18
24	Nationwide Vegetation Plot Database – Sapienza University of Rome: †state of the art, basic figures and future perspectives. Phytocoenologia, 2017, 47, 221-229.	0.5	17
25	Predicting the effect of climate change on tree species abundance and distribution at a regional scale. IForest, 2008, 1, 132-139.	1.4	17
26	A multiple approach for the evaluation of the spatial distribution and dynamics of a forest habitat: the case of Apennine beech forests with Taxus baccata and Ilex aquifolium. Biodiversity and Conservation, 2009, 18, 3099-3113.	2.6	15
27	Different sets of traits explain abundance and distribution patterns of European plants at different spatial scales. Journal of Vegetation Science, 2021, 32, e13016.	2.2	15
28	The Vegetation of the Buna River Protected Landscape (Albania). Hacquetia, 2015, 14, 129-174.	0.4	14
29	Analysing the relationship between land units and plant communities: The case of Socotra Island (Yemen). Plant Biosystems, 2014, 148, 529-539.	1.6	13
30	Optimum plot and sample sizes for carbon stock and biodiversity estimation in the lowland tropical forests of Papua New Guinea. Forestry, 2016, 89, 150-158.	2.3	13
31	Beyond the urban-rural gradient: Self-organizing map detects the nine landscape types of the city of Rome. Urban Forestry and Urban Greening, 2019, 38, 354-370.	5.3	13
32	Phylogenetic structure of European forest vegetation. Journal of Biogeography, 2021, 48, 903-916.	3.0	8
33	Climate and socioâ€economic factors explain differences between observed and expected naturalization patterns of European plants around the world. Global Ecology and Biogeography, 2021, 30, 1514-1531.	5.8	8
34	<i>Phlomis fruticosa</i> scrublands in the central Mediterranean region: syntaxonomy and ecology. Phytocoenologia, 2015, 45, 49-68.	0.5	6
35	Vegetation Database of Albania. Phytocoenologia, 2017, 47, 107-108.	0.5	6
36	The forest communities of Shebenik-Jabllanicë National Park (Central Albania). Phytocoenologia, 2018, 48, 51-76.	0.5	6

MICHELE DE SANCTIS

#	Article	IF	CITATIONS
37	Investigating the effect of selective logging on tree biodiversity and structure of the tropical forests of Papua New Guinea. IForest, 2016, 9, 475-482.	1.4	5
38	Classification and mapping of the woody vegetation of Gonarezhou National Park, Zimbabwe. Koedoe, 2016, 58, .	0.9	4
39	Finite Mixture Model-based classification of a complex vegetation system. Vegetation Classification and Survey, 0, 1, 77-86.	0.0	4
40	Socotra Vegetation Database. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 315-315.	0.3	3
41	Disturbance Impacts of Logging on Ground Herbaceous Plant Species Richness, Diversity, and Composition of Lowland Rainforest of Papua New Guinea. Case Studies in the Environment, 2021, 5, .	0.7	3
42	The ophiolitic communities of Shebenik-Jablanice National Park (Albania). Rendiconti Lincei, 2018, 29, 309-328.	2.2	2
43	BioNNA: the Biodiversity National Network of Albania. Nature Conservation, 0, 25, 77-88.	0.0	2
44	EVSItalia Database HABITAT OF ITALY. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 408-408.	0.3	0
45	Ecological Characterization of Syzygium (Myrtaceae) in Papua New Guinea. Case Studies in the Environment, 2022, 6, .	0.7	0
46	Phytosociology and taxonomic notes on some endemic-rich associations of the Naples Gulf. Hacquetia, 2022, 21, 1-14.	0.4	0