Mauro Krampera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5879554/publications.pdf

Version: 2024-02-01

143 papers 11,647 citations

47006 47 h-index 28297 105 g-index

144 all docs

144 docs citations

144 times ranked 14993 citing authors

#	Article	IF	CITATIONS
1	A prognostic model for patients with lymphoma and COVID-19: aÂmulticentre cohort study. Blood Advances, 2022, 6, 327-338.	5.2	28
2	The transcriptional profile of adipose-derived stromal cells (ASC) mirrors the whitening of adipose tissue with age. European Journal of Cell Biology, 2022, 101, 151206.	3.6	7
3	Update on the Role and Utility of Extracellular Vesicles in Hematological Malignancies. Stem Cells, 2022, 40, 619-629.	3.2	4
4	Long-term efficacy, safety and neurotolerability of MATRix regimen followed by autologous transplant in primary CNS lymphoma: 7-year results of the IELSG32 randomized trial. Leukemia, 2022, 36, 1870-1878.	7.2	47
5	Outcomes in first relapsed-refractory younger patients with mantle cell lymphoma: results from the MANTLE-FIRST study. Leukemia, 2021, 35, 787-795.	7.2	56
6	Effects of CD20 antibodies and kinase inhibitors on Bâ€cell receptor signalling and survival of chronic lymphocytic leukaemia cells. British Journal of Haematology, 2021, 192, 333-342.	2.5	5
7	Second primary malignancy in myelofibrosis patients treated with ruxolitinib. British Journal of Haematology, 2021, 193, 356-368.	2.5	19
8	Ruxolitinib discontinuation syndrome: incidence, risk factors, and management in 251 patients with myelofibrosis. Blood Cancer Journal, 2021, 11, 4.	6.2	41
9	Impact of comorbidities and body mass index on the outcome of polycythemia vera patients. Hematological Oncology, 2021, 39, 409-418.	1.7	9
10	Familial occurrence of systemic and cutaneous mastocytosis in an adult multicentre series. British Journal of Haematology, 2021, 193, 845-848.	2.5	6
11	Ruxolitinib rechallenge in resistant or intolerant patients with myelofibrosis: Frequency, therapeutic effects, and impact on outcome. Cancer, 2021, 127, 2657-2665.	4.1	14
12	Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition. Cytotherapy, 2021, 23, 368-372.	0.7	45
13	Interferon regulatory factor 7 impairs cellular metabolism with age in adipose-derived stromal cells. Journal of Cell Science, 2021, 134, .	2.0	5
14	Consensus International Council for Commonality in Blood Banking Automation–International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy, 2021, 23, 1060-1063.	0.7	15
15	Transfusion of blood products derived from SARS-CoV-2+ donors to patients with hematological malignancies. Transfusion and Apheresis Science, 2021, 60, 103105.	1.0	3
16	Prognostic impact of <scp><i>KMT2Aâ€AFF1</i></scp> â€positivity in 926 <scp><i>BCRâ€ABL1</i></scp> â€nega Bâ€lineage acute lymphoblastic leukemia patients treated in <scp>GIMEMA</scp> clinical trials since 1996. American Journal of Hematology, 2021, 96, E334-E338.	ative 4.1	3
17	Efficacy of R-COMP in comparison to R-CHOP in patients with DLBCL: A systematic review and single-arm metanalysis. Critical Reviews in Oncology/Hematology, 2021, 163, 103377.	4.4	10
18	COVIDâ€19 elicits an impaired antibody response against SARSâ€CoVâ€2 in patients with haematological malignancies. British Journal of Haematology, 2021, 195, 371-377.	2.5	56

#	Article	IF	Citations
19	The serological prevalence of SARSâ€CoVâ€2 infection in patients with chronic myeloid leukemia is similar to that in the general population. Cancer Medicine, 2021, 10, 6310-6316.	2.8	13
20	Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell, 2021, 28, 1708-1725.	11.1	114
21	Making Treatment-Free Remission (TFR) Easier in Chronic Myeloid Leukemia: Fact-Checking and Practical Management Tools. Targeted Oncology, 2021, 16, 823-838.	3.6	5
22	COVID-19 (SARS-CoV-2 infection) in lymphoma patients: A review. World Journal of Virology, 2021, 10, 312-325.	2.9	25
23	Is triple-positive serology for Epstein-Barr virus (VCA-IgG, VCA-IgM, EBNA-IgG) a specific feature of angioimmunoblastic T-cell lymphoma?. Tumori, 2020, 106, 424-426.	1.1	1
24	Life after ruxolitinib: Reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer, 2020, 126, 1243-1252.	4.1	106
25	Oncogenic Mutations of MYD88 and CD79B in Diffuse Large B-Cell Lymphoma and Implications for Clinical Practice. Cancers, 2020, 12, 2913.	3.7	24
26	Tumor Microenvironment Uses a Reversible Reprogramming of Mesenchymal Stromal Cells to Mediate Pro-tumorigenic Effects. Frontiers in Cell and Developmental Biology, 2020, 8, 545126.	3.7	15
27	HS-5 and HS-27A Stromal Cell Lines to Study Bone Marrow Mesenchymal Stromal Cell-Mediated Support to Cancer Development. Frontiers in Cell and Developmental Biology, 2020, 8, 584232.	3.7	28
28	Extracellular Vesicle-Dependent Communication Between Mesenchymal Stromal Cells and Immune Effector Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 596079.	3.7	35
29	Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematology,the, 2020, 7, e737-e745.	4.6	430
30	Small Molecule Inhibitors of Microenvironmental Wnt/ \hat{l}^2 -Catenin Signaling Enhance the Chemosensitivity of Acute Myeloid Leukemia. Cancers, 2020, 12, 2696.	3.7	14
31	The Evolving Knowledge on T and NK Cells in Classic Hodgkin Lymphoma: Insights into Novel Subsets Populating the Immune Microenvironment. Cancers, 2020, 12, 3757.	3.7	13
32	High-throughput analysis and functional interpretation of extracellular vesicle content in hematological malignancies. Computational and Structural Biotechnology Journal, 2020, 18, 2670-2677.	4.1	8
33	Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential. Cytotherapy, 2020, 22, 602-605.	0.7	35
34	Primary pancreatic lymphoma: Clinical presentation, diagnosis, treatment, and outcome. European Journal of Haematology, 2020, 105, 468-475.	2.2	21
35	Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host-disease. Stem Cells, 2020, 38, 698-711.	3.2	48
36	Risk factors for progression to blast phase and outcome in 589 patients with myelofibrosis treated with ruxolitinib: Realâ€world data. Hematological Oncology, 2020, 38, 372-380.	1.7	15

#	Article	IF	CITATIONS
37	Regulative Loop between \hat{I}^2 -catenin and Protein Tyrosine Receptor Type \hat{I}^3 in Chronic Myeloid Leukemia. International Journal of Molecular Sciences, 2020, 21, 2298.	4.1	14
38	Targeting the Endothelin-1 Receptors Curtails Tumor Growth and Angiogenesis in Multiple Myeloma. Frontiers in Oncology, 2020, 10, 600025.	2.8	9
39	The Role of Notch and Wnt Signaling in MSC Communication in Normal and Leukemic Bone Marrow Niche. Frontiers in Cell and Developmental Biology, 2020, 8, 599276.	3.7	30
40	Clinical Characteristics and Outcome of West Nile Virus Infection in Patients with Lymphoid Neoplasms: An Italian Multicentre Study. HemaSphere, 2020, 4, e395.	2.7	4
41	Induction therapy with the MATRix regimen in patients with newly diagnosed primary diffuse large Bâ€cell lymphoma of the central nervous system – an international study of feasibility and efficacy in routine clinical practice. British Journal of Haematology, 2020, 189, 879-887.	2.5	41
42	Do Not Miss Karyotyping at Chronic Myeloid Leukemia Diagnosis: An Italian Campus CML Study on the Role of Complex Variant Translocations. Blood, 2020, 136, 43-44.	1.4	2
43	Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects. Cancer Biology and Medicine, 2020, 17, 828-841.	3.0	6
44	Bendamustine plus rituximab: is it a BRIGHT idea?. Chinese Clinical Oncology, 2020, 9, 22-22.	1.2	0
45	BCR-ABL1 Levels at First Month after TKI Discontinuation Predict Subsequent Maintenance of Treatment-Free Remission: A Study from the "Gruppo Triveneto LMC". Blood, 2020, 136, 9-10.	1.4	1
46	Efficacy of Idelalisib and Rituximab in Relapsed/Refractory Chronic Lymphocytic Leukemia Treated Outside of Clinical Trial. a Report of the Gimema Group. Blood, 2020, 136, 23-25.	1.4	0
47	Differential Treatment Strategy in Polycythemia Vera Patients with Stable Suboptimal Response to Hydroxyurea: Clinical Correlations and Impact on Survival. Blood, 2020, 136, 17-18.	1.4	1
48	Prospective Evaluation of a Continuation Therapy with Midostaurin in Adult Patients with Core-Binding Factor Leukemia and Integrated Genetic Analysis: A Multi Center Phase II Study. Preliminary Results. Blood, 2020, 136, 37-38.	1.4	0
49	Ruxolitinib Rechallenge in Resistant/Intolerant MF Patients: Frequency, Therapeutic Effects, and Impact on Outcome. Blood, 2020, 136, 49-50.	1.4	0
50	Serological Prevalence of Sars-Cov-2 Infection Among Chronic Myeloid Leukemia Patients Undergoing Tyrosine Kinase Inhibitor Treatment in Italy (COVID-19-HEM Study). Blood, 2020, 136, 42-42.	1.4	1
51	First Line Treatment with Hydroxyurea in Patients with Policitemia Vera: Evaluation of Efficacy in the Current Clinical Practice Beyond ELN Criteria. Blood, 2020, 136, 43-44.	1.4	0
52	CAL2 monoclonal antibody is a rapid and sensitive assay for the detection of calreticulin mutations in essential thrombocythemia patients. Annals of Hematology, 2019, 98, 2339-2346.	1.8	4
53	Mesenchymal stem versus stromal cells: International Society for Cell & Description (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy, 2019, 21, 1019-1024.	0.7	466
54	Management of Chronic Myeloid Leukemia in Advanced Phase. Frontiers in Oncology, 2019, 9, 1132.	2.8	54

#	Article	IF	CITATIONS
55	Impact of 2016 WHO diagnosis of early and overt primary myelofibrosis on presentation and outcome of 232 patients treated with ruxolitinib. Hematological Oncology, 2019, 37, 418-423.	1.7	3
56	Extracellular Vesicles Mediate Mesenchymal Stromal Cell-Dependent Regulation of B Cell PI3K-AKT Signaling Pathway and Actin Cytoskeleton. Frontiers in Immunology, 2019, 10, 446.	4.8	73
57	Notch Signaling Molecules as Prognostic Biomarkers for Acute Myeloid Leukemia. Cancers, 2019, 11, 1958.	3.7	20
58	Inhibition of Notch Signaling Enhances Chemosensitivity in B-cell Precursor Acute Lymphoblastic Leukemia. Cancer Research, 2019, 79, 639-649.	0.9	41
59	Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 192-198.	7.4	43
60	Prognostic Impact of t(4;11)(q21;q23)/KMT2A-AFF1-Positivity in 926 BCR-ABL1-Negative B-Lineage Acute Lymphoblastic Leukemia Patients Treated in Gimema Clinical Trials Since 1996. Blood, 2019, 134, 1469-1469.	1.4	2
61	Risk Factors for Progression to Blast Phase and Outcome in 589 Patients with Myelofibrosis Treated with Ruxolitinib: Real-World Evidence. Blood, 2019, 134, 4166-4166.	1.4	0
62	Comorbidities Reduce Response to Induction Treatment and Survival in Adults with Philadelphia-Negative Acute Lymphoblastic Leukemia. Blood, 2019, 134, 2587-2587.	1.4	0
63	Impact of Comorbidities and Body Mass Index in Patients with Polycythemia Vera: A PV-NET Real World Study. Blood, 2019, 134, 4184-4184.	1.4	1
64	Clinical Outcomes Under Hydroxyurea and Impact of ELN Responses in Patients with Polycythemia Vera: A PV-NET Real World Study. Blood, 2019, 134, 4174-4174.	1.4	2
65	Generic Versus Branded Imatinib As Frontline Therapy in Chronic-Phase Chronic Myeloid Leukemia Patients in Italy: A Case-Control Study. Blood, 2019, 134, 5909-5909.	1.4	0
66	Adipocytes sustain pancreatic cancer progression through a non-canonical WNT paracrine network inducing ROR2 nuclear shuttling. International Journal of Obesity, 2018, 42, 334-343.	3.4	31
67	Safety and efficacy of switching from branded to generic imatinib in chronic phase chronic myeloid leukemia patients treated in Italy. Leukemia Research, 2018, 74, 75-79.	0.8	14
68	Primary sphenoid lymphoma: Focus on imaging. Tumori, 2018, 104, NP42-NP45.	1.1	1
69	Outcome of Patients with Myelofibrosis after Ruxolitinib Failure: Role of Disease Status and Treatment Strategies in 214 Patients. Blood, 2018, 132, 4277-4277.	1.4	11
70	Excellent outcomes of 2G-TKI therapy after imatinib failure in chronic phase CML patients. Oncotarget, 2018, 9, 14219-14227.	1.8	13
71	Characterization of a new B-ALL cell line with constitutional defect of the Notch signaling pathway. Oncotarget, 2018, 9, 18341-18350.	1.8	9
72	MicroRNA signatures and Foxp3+ cell count correlate with relapse occurrence in follicular lymphoma. Oncotarget, 2018, 9, 19961-19979.	1.8	11

#	Article	IF	CITATIONS
73	MYC-related microRNAs signatures in non-Hodgkin B-cell lymphomas and their relationships with core cellular pathways. Oncotarget, 2018, 9, 29753-29771.	1.8	13
74	Prognostic Impact of Notch Signaling in Acute Myeloid Leukemia (AML). Blood, 2018, 132, 5242-5242.	1.4	3
75	Presentation and Outcome of 199 Patients with 2016 Who Diagnosis of Early and Overt Primary Myelofibrosis Treated with Ruxolitinib. Blood, 2018, 132, 3052-3052.	1.4	0
76	Stem cells to restore insulin production and cure diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 583-600.	2.6	26
77	A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type \hat{I}^3 in chronic myeloid leukemia patients. Journal of Hematology and Oncology, 2017, 10, 129.	17.0	17
78	Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biology and Medicine, 2017, 14, 109.	3.0	81
79	Mesenchymal stromal cells' role in tumor microenvironment: involvement of signaling pathways. Cancer Biology and Medicine, 2017, 14, 129.	3.0	74
80	Mesenchymal Stem/Stromal Cell Trafficking and Homing. , 2017, , 169-191.		0
81	Mesenchymal stromal cells (MSCs) induce ex vivo proliferation and erythroid commitment of cord blood haematopoietic stem cells (CB-CD34+ cells). PLoS ONE, 2017, 12, e0172430.	2.5	35
82	Identification of microRNAs implicated in the late differentiation stages of normal B cells suggests a central role for miRNA targets ZEB1 and TP53. Oncotarget, 2017, 8, 11809-11826.	1.8	11
83	Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy. Oncotarget, 2017, 8, 86987-87001.	1.8	18
84	Notch signalling drives bone marrow stromal cell-mediated chemoresistance in acute myeloid leukemia. Oncotarget, 2016, 7, 21713-21727.	1.8	85
85	Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Scientific Reports, 2016, 6, 24120.	3.3	262
86	International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 2016, 18, 151-159.	0.7	400
87	Role of Wnt β-Catenin Signalling in Acute Myeloid Leukemia (AML) Cell Response to Chemotherapy. Blood, 2016, 128, 2753-2753.	1.4	2
88	Similar Efficacy of Dasatinib and Nilotinib As Second-Line Therapy in Patients with Chronic Phase Chronic Myeloid Leukemia Failing Imatinib: A Retrospective, Real-Life Study. Blood, 2016, 128, 5434-5434.	1.4	0
89	CAL2 Monoclonal Antibody Is a Rapid and Sensitive Assay for the Detection of Calreticulin Mutations in Essential Thrombocythemia and May Provide Prognostic Informations. Blood, 2016, 128, 3122-3122.	1.4	0
90	Imatinib-treated Chronic Myeloid Leukemia patients with discordant response between cytogenetic and molecular tests at 3 and 6 month time-points have a reduced probability of subsequent optimal response. Haematologica, 2015, 100, e299-301.	3.5	9

#	Article	IF	CITATIONS
91	Meninges harbor cells expressing neural precursor markers during development and adulthood. Frontiers in Cellular Neuroscience, 2015, 9, 383.	3.7	44
92	Injection Molded Polymeric Micropatterns for Bone Regeneration Study. ACS Applied Materials & Interfaces, 2015, 7, 7273-7281.	8.0	15
93	Immune Regulatory Properties of CD117 ^{pos} Amniotic Fluid Stem Cells Vary According to Gestational Age. Stem Cells and Development, 2015, 24, 132-143.	2.1	46
94	Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells. British Journal of Cancer, 2015, 112, 1067-1075.	6.4	158
95	The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria. Cytotherapy, 2015, 17, 125-127.	0.7	64
96	In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome. Stem Cells Translational Medicine, 2015, 4, 1199-1213.	3.3	131
97	Immunophenotypic analysis of hematopoiesis in patients suffering from Shwachman–Bodian–Diamond Syndrome. European Journal of Haematology, 2015, 95, 308-315.	2.2	16
98	Effects of a Ceramic Biomaterial on Immune Modulatory Properties and Differentiation Potential of Human Mesenchymal Stromal Cells of Different Origin. Tissue Engineering - Part A, 2015, 21, 767-781.	3.1	15
99	Mesenchymal Stem Cell Biodistribution, Migration, and Homing (i>In Vivo (i>). Stem Cells International, 2014, 2014, 1-2.	2.5	34
100	Signaling pathways in breast cancer: Therapeutic targeting of the microenvironment. Cellular Signalling, 2014, 26, 2843-2856.	3.6	79
101	Comparative Study of Immune Regulatory Properties of Stem Cells Derived from Different Tissues. Stem Cells and Development, 2013, 22, 2990-3002.	2.1	89
102	MSCs: science and trials. Nature Medicine, 2013, 19, 812-812.	30.7	41
103	Clinical-Grade Mesenchymal Stromal Cells Produced Under Various Good Manufacturing Practice Processes Differ in Their Immunomodulatory Properties: Standardization of Immune Quality Controls. Stem Cells and Development, 2013, 22, 1789-1801.	2.1	186
104	Immunological characterization of multipotent mesenchymal stromal cellsâ€"The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy, 2013, 15, 1054-1061.	0.7	364
105	Comparison Between Bone Marrow Mesenchymal Stromal Cells (BM-MSC) and Lung Mesenchymal Stromal Cells (Lung-MSC) For Epithelial Regeneration. Blood, 2013, 122, 5414-5414.	1.4	5
106	Genomic Analysis Of Notch Mutations In a Case Of Alagille Syndrome With Acute Lymphoblastic Leukemia. Blood, 2013, 122, 4992-4992.	1.4	1
107	Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy. Blood Cancer Journal, 2012, 2, e73-e73.	6.2	91
108	Neural Stem Cell Niches in Health and Diseases. Current Pharmaceutical Design, 2012, 18, 1755-1783.	1.9	82

#	Article	IF	CITATIONS
109	Mesenchymal Stem Cell Isolation and Expansion Methodology. , 2012, , 23-33.		O
110	Comparison of Epithelial Differentiation and Immune Regulatory Properties of Mesenchymal Stromal Cells Derived from Human Lung and Bone Marrow. PLoS ONE, 2012, 7, e35639.	2.5	67
111	VR09 Cell Line: An EBV-Positive Lymphoblastoid Cell Line with In Vivo Characteristics of Diffuse Large B Cell Lymphoma of Activated B-Cell Type. PLoS ONE, 2012, 7, e52811.	2.5	7
112	Meninges: from protective membrane to stem cell niche. American Journal of Stem Cells, 2012, 1, 92-105.	0.4	66
113	Mesenchymal stem cells and autoimmune diseases. Best Practice and Research in Clinical Haematology, 2011, 24, 49-57.	1.7	100
114	Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow–derived mesenchymal stromal cells. Blood, 2011, 118, 380-389.	1.4	116
115	Notch signaling in acute lymphoblastic leukemia: any role for stromal microenvironment?. Blood, 2011, 118, 6506-6514.	1.4	43
116	Mesenchymal stromal cell †licensing': a multistep process. Leukemia, 2011, 25, 1408-1414.	7.2	325
117	Efficacy Assessment of Interferon-Alpha–Engineered Mesenchymal Stromal Cells in a Mouse Plasmacytoma Model. Stem Cells and Development, 2011, 20, 709-719.	2.1	19
118	Toll-Like Receptor-3-Activated Human Mesenchymal Stromal Cells Significantly Prolong the Survival and Function of Neutrophils. Stem Cells, 2011, 29, 1001-1011.	3.2	185
119	Nestin- and Doublecortin-Positive Cells Reside in Adult Spinal Cord Meninges and Participate in Injury-Induced Parenchymal Reaction. Stem Cells, 2011, 29, 2062-2076.	3.2	102
120	Quality Controls of Immune Regulatory Properties of Ex-Vivo, GMP-Grade Expanded Mesenchymal Stromal Cells for Clinical Use (European multicenter study CASCADE),. Blood, 2011, 118, 4049-4049.	1.4	0
121	Human Bone Marrow and Adipose Tissue Mesenchymal Stem Cells: A User's Guide. Stem Cells and Development, 2010, 19, 1449-1470.	2.1	297
122	Mesenchymal stem cells for clinical application. Vox Sanguinis, 2010, 98, 93-107.	1.5	228
123	Immunological properties of embryonic and adult stem cells. World Journal of Stem Cells, 2010, 2, 50.	2.8	40
124	Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Molecular Cancer, 2010, 9, 273.	19.2	99
125	Novel stem/progenitor cells with neuronal differentiation potential reside in the leptomeningeal niche. Journal of Cellular and Molecular Medicine, 2009, 13, 3195-3208.	3.6	54
126	Adipose-Derived Mesenchymal Stem Cells Ameliorate Chronic Experimental Autoimmune Encephalomyelitis. Stem Cells, 2009, 27, 2624-2635.	3.2	370

#	Article	IF	CITATIONS
127	Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene, 2008, 27, 2542-2551.	5.9	114
128	Stem molecular signature of adipose-derived stromal cells. Experimental Cell Research, 2008, 314, 603-615.	2.6	109
129	Toll-Like Receptors 3 and 4 Are Expressed by Human Bone Marrow-Derived Mesenchymal Stem Cells and Can Inhibit Their T-Cell Modulatory Activity by Impairing Notch Signaling. Stem Cells, 2008, 26, 279-289.	3.2	429
130	Neuronal Differentiation Potential of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cells and Development, 2008, 17, 909-916.	2.1	205
131	Immune Modulation by Mesenchymal Stem Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 194-204.	1.6	48
132	Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone, 2007, 40, 382-390.	2.9	216
133	Immune Regulation by Mesenchymal Stem Cells Derived from Adult Spleen and Thymus. Stem Cells and Development, 2007, 16, 797-810.	2.1	108
134	Mesenchymal stem cells: from biology to clinical use. Blood Transfusion, 2007, 5, 120-9.	0.4	82
135	Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 2006, 39, 678-683.	2.9	280
136	Regenerative and immunomodulatory potential of mesenchymal stem cells. Current Opinion in Pharmacology, 2006, 6, 435-441.	3.5	162
137	Role for Interferon- \hat{l}^3 in the Immunomodulatory Activity of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells, 2006, 24, 386-398.	3.2	1,226
138	Methodological approach to minimal residual disease detection by flow cytometry in adult B-lineage acute lymphoblastic leukemia. Haematologica, 2006, 91, 1109-12.	3.5	26
139	HB-EGF/HER-1 signaling in bone marrow mesenchymal stem cells: inducing cell expansion and reversibly preventing multilineage differentiation. Blood, 2005, 106, 59-66.	1.4	210
140	P53 and p21waf1â€" Expression by Immunohistochemistry in Diffuse Large B-Cell Lymphoma Has a Strong and Independent Impact on Survival of Patients with Germinal Center Phenotype Blood, 2005, 106, 1920-1920.	1.4	0
141	Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia. British Journal of Haematology, 2003, 120, 74-79.	2.5	56
142	Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 2003, 101, 3722-3729.	1.4	1,483
143	Intracellular cytokine profile of cord blood T-, and NK- cells and monocytes. Haematologica, 2000, 85, 675-9.	3.5	46