Uta Paszkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5879353/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science, 2002, 296, 92-100.	6.0	2,866
2	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	3.3	717
3	Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13324-13329.	3.3	565
4	Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 2006, 223, 1115-1122.	1.6	553
5	Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8066-8070.	3.3	368
6	Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the <i>PHOSPHATE TRANSPORTER1</i> Gene Family. Plant Cell, 2012, 24, 4236-4251.	3.1	306
7	The transcriptome of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193, 755-769.	3.5	305
8	Arbuscular Mycorrhiza–Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway. Plant Cell, 2008, 20, 2989-3005.	3.1	235
9	Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of rootâ€external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 2017, 214, 632-643.	3.5	210
10	Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends in Plant Science, 2008, 13, 93-97.	4.3	194
11	Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science, 2015, 350, 1521-1524.	6.0	191
12	Tissue-Adapted Invasion Strategies of the Rice Blast Fungus <i>Magnaporthe oryzae</i> Â. Plant Cell, 2010, 22, 3177-3187.	3.1	179
13	Reprogramming Plant Cells for Endosymbiosis. Science, 2009, 324, 753-754.	6.0	160
14	<i>Glomus intraradices</i> induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytologist, 2009, 182, 829-837.	3.5	154
15	Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature Biotechnology, 2013, 31, 325-330.	9.4	149
16	Weights in the Balance: Jasmonic Acid and Salicylic Acid Signaling in Root-Biotroph Interactions. Molecular Plant-Microbe Interactions, 2009, 22, 763-772.	1.4	148
17	Plant carbon nourishment of arbuscular mycorrhizal fungi. Current Opinion in Plant Biology, 2017, 39, 50-56.	3.5	143
18	A journey through signaling in arbuscular mycorrhizal symbioses 2006. New Phytologist, 2006, 172, 35-46.	3.5	132

UTA PASZKOWSKI

#	Article	IF	CITATIONS
19	The halfâ€size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant Journal, 2012, 69, 906-920.	2.8	131
20	Mutualism and parasitism: the yin and yang of plant symbioses. Current Opinion in Plant Biology, 2006, 9, 364-370.	3.5	124
21	Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 2013, 4, 204.	1.7	121
22	Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annual Review of Phytopathology, 2018, 56, 135-160.	3.5	116
23	Arbuscular cell invasion coincides with extracellular vesicles and membrane tubules. Nature Plants, 2019, 5, 204-211.	4.7	107
24	Divergence of Evolutionary Ways Among Common sym Genes: CASTOR and CCaMK Show Functional Conservation Between Two Symbiosis Systems and Constitute the Root of a Common Signaling Pathway. Plant and Cell Physiology, 2008, 49, 1659-1671.	1.5	103
25	The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice. Nature Communications, 2020, 11, 2114.	5.8	101
26	Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6754-6759.	3.3	99
27	Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2013, 16, 473-479.	3.5	84
28	An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3, 17073.	4.7	72
29	Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant Journal, 2006, 47, 165-173.	2.8	71
30	Symbiotic Cooperation in the Biosynthesis of a Phytotoxin. Angewandte Chemie - International Edition, 2012, 51, 9615-9618.	7.2	69
31	Blumenols as shoot markers of root symbiosis with arbuscular mycorrhizal fungi. ELife, 2018, 7, .	2.8	69
32	The growth defect of lrt1 , a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta, 2002, 214, 584-590.	1.6	65
33	Characterizing variation in mycorrhiza effect among diverse plant varieties. Theoretical and Applied Genetics, 2010, 120, 1029-1039.	1.8	57
34	The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals: insights from genetics and genomics. New Phytologist, 2018, 220, 1135-1140.	3.5	54
35	Mechanisms and Impact of Symbiotic Phosphate Acquisition. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034603.	2.3	53
36	A rice Serine/Threonine receptor-like kinase regulates arbuscular mycorrhizal symbiosis at the peri-arbuscular membrane. Nature Communications, 2018, 9, 4677.	5.8	45

UTA PASZKOWSKI

#	Article	IF	CITATIONS
37	Lipid Droplets of Arbuscular Mycorrhizal Fungi Emerge in Concert with Arbuscule Collapse. Plant and Cell Physiology, 2014, 55, 1945-1953.	1.5	41
38	Full Establishment of Arbuscular Mycorrhizal Symbiosis in Rice Occurs Independently of Enzymatic Jasmonate Biosynthesis. PLoS ONE, 2015, 10, e0123422.	1.1	41
39	Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms. Nucleic Acids Research, 1993, 21, 3445-3450.	6.5	40
40	Receptor-Like Kinases Sustain Symbiotic Scrutiny. Plant Physiology, 2020, 182, 1597-1612.	2.3	34
41	Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice. New Phytologist, 2018, 217, 552-557.	3.5	28
42	Co-ordinated Changes in the Accumulation of Metal Ions in Maize (Zea mays ssp. mays L.) in Response to Inoculation with the Arbuscular Mycorrhizal Fungus Funneliformis mosseae. Plant and Cell Physiology, 2017, 58, 1689-1699.	1.5	27
43	Phosphate Import at the Arbuscule: Just a Nutrient?. Molecular Plant-Microbe Interactions, 2011, 24, 1296-1299.	1.4	25
44	The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation. ELife, 2020, 9, .	2.8	24
45	Arbuscular mycorrhizal phenotyping: the dos and don'ts. New Phytologist, 2019, 221, 1182-1186.	3.5	23
46	Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice. Journal of Integrative Plant Biology, 2015, 57, 969-979.	4.1	19
47	Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus <i>Rhizophagus irregularis</i> . Genome Research, 2021, 31, 2290-2302.	2.4	19
48	A mycorrhiza-associated receptor-like kinase with an ancient origin in the green lineage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
49	Conditioning plants for arbuscular mycorrhizal symbiosis through DWARF14-LIKE signalling. Current Opinion in Plant Biology, 2021, 62, 102071.	3.5	13
50	Multifaceted Cellular Reprogramming at the Crossroads Between Plant Development and Biotic Interactions. Plant and Cell Physiology, 2018, 59, 651-655.	1.5	9
51	How membrane receptors tread the fine balance between symbiosis and immunity signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
52	The Molecular Components of Nutrient Exchange in Arbuscular Mycorrhizal Interactions. , 2008, , 37-59.		6
53	Editorial overview: Biotic interactions: The diverse and dynamic nature of perception and response in plant interactions: from cells to communities. Current Opinion in Plant Biology, 2015, 26, v-viii.	3.5	1
54	Visualising an invisible symbiosis. Plants People Planet, 2021, 3, 462-470.	1.6	0