Andrey V Korotitskiy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5877532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A promising microstructure/deformability adjustment of β-stabilized γ-TiAl intermetallics. Materials Letters, 2016, 162, 180-184.	2.6	35
2	Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti-Nb-Zr and Ti-Nb-Ta shape-memory alloys. Physics of Metals and Metallography, 2015, 116, 413-422.	1.0	19
3	Optimization of ball-milling process for preparation of Si–Ge nanostructured thermoelectric materials with a high figure of merit. Scripta Materialia, 2015, 96, 9-12.	5.2	45
4	Role of the structure and texture in the realization of the recovery strain resource of the nanostructured Ti-50.26 at %Ni alloy. Physics of Metals and Metallography, 2014, 115, 926-947.	1.0	15
5	Nanostructured titanium-based materials for medical implants: Modeling and development. Materials Science and Engineering Reports, 2014, 81, 1-19.	31.8	214
6	In situ X-ray diffraction strain-controlled study of Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys: crystal lattice and transformation features. Materials Characterization, 2014, 88, 127-142.	4.4	27
7	Optimization of Regimes of Thermodeformation Treatment of High-Strength Aluminum Alloy 019705. Metal Science and Heat Treatment, 2014, 56, 21-23.	0.6	0
8	Nanostructured titanium alloys and multicomponent bioactive films: Mechanical behavior at indentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 570, 51-62.	5.6	39
9	Formation of nanostructures in thermomechanically-treated Ti–Ni and Ti–Nb-(Zr, Ta) SMAs and their roles in martensite crystal lattice changes and mechanical behavior. Journal of Alloys and Compounds, 2013, 577, S418-S422.	5.5	30
10	Crystal lattice of martensite and the reserve of recoverable strain of thermally and thermomechanically treated Ti-Ni shape-memory alloys. Physics of Metals and Metallography, 2011, 112, 170-187.	1.0	48
11	Structure formation during thermomechanical processing of Ti-Nb-(Zr, Ta) alloys and the manifestation of the shape-memory effect. Physics of Metals and Metallography, 2011, 112, 503-516.	1.0	32
12	Specific features of the formation of the microstructure of titanium nickelide upon thermomechanical treatment including cold plastic deformation to degrees from moderate to severe. Physics of Metals and Metallography, 2010, 110, 289-303.	1.0	45
13	Investigation of the influence of the parameters of pulsed electric action upon deformation on the structure and functional properties of a Ti-Ni alloy with a shape-memory effect. Physics of Metals and Metallography, 2009, 108, 616-624.	1.0	5
14	Characterization of amorphous and nanocrystalline Ti–Ni-based shape memory alloys. Journal of Alloys and Compounds, 2009, 473, 71-78.	5.5	46
15	A comparative study of martensite crystal lattice in nanostructured, quenched and deformed Ti-Ni shape memory alloys. , 2009, , .		0
16	Structural and microhardness changes during long-term storage of Ti-Ni shape memory alloys after plastic deformation. , 2009, , .		0
17	Low-temperature X-ray diffraction study of martensite lattice parameters in binary Ti–Ni alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 489-493.	5.6	13
18	Structure and properties of Ti–Ni-based alloys after equal-channel angular pressing and high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 119-122.	5.6	58

#	Article	IF	CITATIONS
19	Effect of Nanocrystalline Structure and Polygonized Dislocation Substructure on Ti-Ni Martensite Lattice Parameters and Transformation Lattice Strain. Materials Science Forum, 2008, 584-586, 475-480.	0.3	4
20	Creation of submicrocrystalline structure and improvement of functional properties of shape memory alloys of the Ti-Ni-Fe system with the help of ECAP. Metal Science and Heat Treatment, 2007, 49, 51-56.	0.6	8
21	Comparative X-ray and time-of-flight neutron diffraction studies of martensite crystal lattice in stressed and unstressed binary Ti–Ni alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 549-552.	5.6	7
22	Martensitic transformations and functional properties of thermally and thermomechanically treated Ti–Ni–Nb-based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 553-557.	5.6	13
23	On the lattice parameters of phases in binary Ti–Ni shape memory alloys. Acta Materialia, 2004, 52, 4479-4492.	7.9	112
24	Concentration, temperature and deformation dependences of martensite lattice parameters in binary Ti-Ni shape memory alloys. European Physical Journal Special Topics, 2003, 112, 651-654.	0.2	5
25	Long-Term Microhardness Evolution in Ti-Ni Shape Memory Alloys Processed by Severe Cold Rolling. Materials Science Forum, 0, 584-586, 1039-1044.	0.3	Ο
26	Functional Properties of Ti-Ni-Based Shape Memory Alloys. Advances in Science and Technology, 0, , .	0.2	4
27	Structure and Functional Properties of Ti-Ni-Based Shape Memory Alloy after Electroplastic Deformation. Materials Science Forum, 0, 584-586, 982-987.	0.3	2
28	A Comparative Study of Structure Formation in Thermomechanically Treated Ti-Ni and Ti-Nb-(Zr, Ta) SMA. Materials Science Forum, 0, 706-709, 1931-1936.	0.3	5