
Tommy Regen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5877229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD4+ T-cell-derived IL-10 promotes CNS inflammation in mice by sustaining effector TÂcell survival. Cell Reports, 2022, 38, 110565.	6.4	14
2	Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids, 2022, 54, 1339-1356.	2.7	50
3	Modeling a complex disease: Multiple sclerosis—Update 2020. Advances in Immunology, 2021, 149, 25-34.	2.2	7
4	IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Science Immunology, 2021, 6, .	11.9	67
5	Meningeal Î ³ δT Cells Impact on Cognition in Health and Disease. Biological Psychiatry, 2021, 89, S64-S65.	1.3	0
6	Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood–brain barrier. Acta Neuropathologica, 2020, 140, 549-567.	7.7	47
7	Meningeal γδT cell–derived IL-17 controls synaptic plasticity and short-term memory. Science Immunology, 2019, 4, .	11.9	184
8	<scp>IL</scp> â€17A/F in <i>Leishmania major</i> â€resistant C57 <scp>BL</scp> /6 mice. Experimental Dermatology, 2019, 28, 321-323.	2.9	8
9	Alternative Splice Forms of CYLD Mediate Ubiquitination of SMAD7 to Prevent TGFB Signaling and Promote Colitis. Gastroenterology, 2019, 156, 692-707.e7.	1.3	24
10	IL-4 Receptor Alpha Signaling through Macrophages Differentially Regulates Liver Fibrosis Progression and Reversal. EBioMedicine, 2018, 29, 92-103.	6.1	81
11	Expression of IL-17F is associated with non-pathogenic Th17 cells. Journal of Molecular Medicine, 2018, 96, 819-829.	3.9	21
12	RNase H2 Loss in Murine Astrocytes Results in Cellular Defects Reminiscent of Nucleic Acid-Mediated Autoinflammation. Frontiers in Immunology, 2018, 9, 587.	4.8	14
13	TGF-Î ² inhibitor Smad7 regulates dendritic cell-induced autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1480-E1489.	7.1	37
14	A presumed antagonistic LPS identifies distinct functional organization of TLR4 in mouse microglia. Glia, 2017, 65, 1176-1185.	4.9	20
15	<scp>IL</scp> â€1 signaling is critical for expansion but not generation of autoreactive <scp>GM</scp> ― <scp>CSF</scp> ⁺ Th17 cells. EMBO Journal, 2017, 36, 102-115.	7.8	50
16	Interferon-Î ³ -Driven iNOS: A Molecular Pathway to Terminal Shock in Arenavirus Hemorrhagic Fever. Cell Host and Microbe, 2017, 22, 354-365.e5.	11.0	14
17	Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nature Immunology, 2017, 18, 74-85.	14.5	311
18	Generation of a Novel T Cell Specific Interleukin-1 Receptor Type 1 Conditional Knock Out Mouse Reveals Intrinsic Defects in Survival, Expansion and Cytokine Production of CD4 T Cells. PLoS ONE, 2016, 11, e0161505.	2.5	12

TOMMY REGEN

#	Article	IF	CITATIONS
19	<scp>CD</scp> 14 is a key organizer of microglial responses to <scp>CNS</scp> infection and injury. Glia, 2016, 64, 635-649.	4.9	69
20	TLR4-activated microglia require IFN-Î ³ to induce severe neuronal dysfunction and death in situ. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 212-217.	7.1	160
21	Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia, 2015, 63, 1083-1099.	4.9	29
22	The role of IL-17 in CNS diseases. Acta Neuropathologica, 2015, 129, 625-637.	7.7	254
23	Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. Immunity, 2015, 43, 92-106.	14.3	506
24	Microglia are unique tissue phagocytes with high self-renewing capacity. Journal of Neuroimmunology, 2014, 275, 82.	2.3	1
25	IFN-γ–Producing CD4+ T Cells Promote Generation of Protective Germinal Center–Derived IgM+ B Cell Memory against <i>Salmonella</i> Typhi. Journal of Immunology, 2014, 192, 5192-5200.	0.8	35
26	Empty liposomes induce antitumoral effects associated with macrophage responses distinct from those of the TLR1/2 agonist Pam3CSK4 (BLP). Cancer Immunology, Immunotherapy, 2013, 62, 1587-1597.	4.2	9
27	A new model for primary-progressive multiple sclerosis?. Acta Neuropathologica, 2013, 126, 519-521.	7.7	0
28	Resistance of the Brain to Escherichia coli K1 Infection Depends on MyD88 Signaling and the Contribution of Neutrophils and Monocytes. Infection and Immunity, 2013, 81, 1810-1819.	2.2	34
29	Histone deacetylase inhibitors suppress immune activation in primary mouse microglia. Journal of Neuroscience Research, 2013, 91, 1133-1142.	2.9	88
30	Tollâ€like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia, 2012, 60, 1930-1943.	4.9	85
31	The nucleotide-binding oligomerization domain-containing-2 ligand muramyl dipeptide enhances phagocytosis and intracellular killing of Escherichia coli K1 by Toll-like receptor agonists in microglial cells. Journal of Neuroimmunology, 2012, 252, 16-23.	2.3	15
32	Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathologica, 2012, 124, 411-424.	7.7	142
33	Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. Journal of Cell Science, 2011, 124, 447-458.	2.0	660
34	CD14 and TRIF govern distinct responsiveness and responses in mouse microglial TLR4 challenges by structural variants of LPS. Brain, Behavior, and Immunity, 2011, 25, 957-970.	4.1	50
35	Fibronectin stimulates <i>Escherichia coli</i> phagocytosis by microglial cells. Glia, 2010, 58, 367-376.	4.9	18
36	Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. Journal of Neuroimmunology, 2010, 229, 169-179.	2.3	65

TOMMY REGEN

#	Article	IF	CITATIONS
37	Microglia promote colonization of brain tissue by breast cancer cells in a Wntâ€dependent way. Glia, 2010, 58, 1477-1489.	4.9	184
38	Inflammatory chemokine release of astrocytes <i>in vitro</i> is reduced by allâ€ <i>trans</i> retinoic acid. Journal of Neurochemistry, 2010, 114, 1511-1526.	3.9	40
39	Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through norepinephrine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6058-6063.	7.1	408
40	Toll-Like Receptor Stimulation Enhances Phagocytosis and Intracellular Killing of Nonencapsulated and Encapsulated <i>Streptococcus pneumoniae</i> by Murine Microglia. Infection and Immunity, 2010, 78, 865-871.	2.2	128
41	T Cell-Dependence of Lassa Fever Pathogenesis. PLoS Pathogens, 2010, 6, e1000836.	4.7	89
42	The viral TLR3 agonist poly(I:C) stimulates phagocytosis and intracellular killing of Escherichia coli by microglial cells. Neuroscience Letters, 2010, 482, 17-20.	2.1	30
43	Toll-Like Receptor Prestimulation Increases Phagocytosis of <i>Escherichia coli</i> DH5α and <i>Escherichia coli</i> K1 Strains by Murine Microglial Cells. Infection and Immunity, 2009, 77, 557-564.	2.2	70
44	Manipulation of Host Hepatocytes by the Malaria Parasite for Delivery into Liver Sinusoids. Science, 2006, 313, 1287-1290.	12.6	441
45	A new clinically relevant approach to expand myelin specific T cells. Journal of Immunological Methods, 2006, 310, 53-61.	1.4	20