Harmen J Bussemaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5876801/publications.pdf

Version: 2024-02-01

67 papers 8,632 citations

71102 41 h-index 95266 68 g-index

75 all docs

75 docs citations

75 times ranked 10721 citing authors

#	Article	IF	CITATIONS
1	Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells. Cell, 2010, 143, 212-224.	28.9	854
2	Regulatory element detection using correlation with expression. Nature Genetics, 2001, 27, 167-171.	21.4	648
3	Cofactor Binding Evokes Latent Differences in DNA Binding Specificity between Hox Proteins. Cell, 2011, 147, 1270-1282.	28.9	454
4	Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Research, 2005, 15, 1-18.	5 . 5	453
5	Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes and Development, 2003, 17, 1101-1114.	5.9	352
6	Evaluation of methods for modeling transcription factor sequence specificity. Nature Biotechnology, 2013, 31, 126-134.	17.5	341
7	The Human Transcriptome Map Reveals Extremes in Gene Density, Intron Length, GC Content, and Repeat Pattern for Domains of Highly and Weakly Expressed Genes. Genome Research, 2003, 13, 1998-2004.	5.5	306
8	A Gene Expression Map for the Euchromatic Genome of Drosophila melanogaster. Science, 2004, 306, 655-660.	12.6	275
9	PQM-1 Complements DAF-16 as a Key Transcriptional Regulator of DAF-2-Mediated Development and Longevity. Cell, 2013, 154, 676-690.	28.9	270
10	Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics, 2006, 22, e141-e149.	4.1	259
11	Identification of genes expressed in C. elegans touch receptor neurons. Nature, 2002, 418, 331-335.	27.8	230
12	Quantitative modeling of transcription factor binding specificities using DNA shape. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4654-4659.	7.1	218
13	Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics, 2004, 5, 31.	2.6	212
14	DSSR: an integrated software tool for dissecting the spatial structure of RNA. Nucleic Acids Research, 2015, 43, gkv716.	14.5	204
15	T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Research, 2005, 33, W592-W595.	14.5	190
16	Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12027-12032.	7.1	182
17	Deconvolving the Recognition of DNA Shape from Sequence. Cell, 2015, 161, 307-318.	28.9	174
18	High-throughput identification of human SNPs affecting regulatory element activity. Nature Genetics, 2019, 51, 1160-1169.	21.4	157

#	Article	IF	CITATIONS
19	Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes and Development, 2003, 17, 2825-2838.	5.9	153
20	Probing DNA shape and methylation state on a genomic scale with DNase I. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6376-6381.	7.1	151
21	Profiling condition-specific, genome-wide regulation of mRNA stability in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17675-17680.	7.1	150
22	Low-Affinity Binding Sites and the Transcription Factor Specificity Paradox in Eukaryotes. Annual Review of Cell and Developmental Biology, 2019, 35, 357-379.	9.4	144
23	In search of the determinants of enhancer–promoter interaction specificity. Trends in Cell Biology, 2014, 24, 695-702.	7.9	142
24	Revisiting the codon adaptation index from a whole-genome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. Nucleic Acids Research, 2003, 31, 2242-2251.	14.5	136
25	Evolving insights on how cytosine methylation affects protein-DNA binding. Briefings in Functional Genomics, 2015, 14, 61-73.	2.7	122
26	Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2580-2585.	7.1	114
27	TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6030-6035.	7.1	104
28	Dissection of Transient Oxidative Stress Response inSaccharomyces cerevisiaeby Using DNA Microarrays. Molecular Biology of the Cell, 2002, 13, 2783-2794.	2.1	103
29	Quantitative Analysis of the DNA Methylation Sensitivity of Transcription Factor Complexes. Cell Reports, 2017, 19, 2383-2395.	6.4	100
30	Genome-wide mapping of autonomous promoter activity in human cells. Nature Biotechnology, 2017, 35, 145-153.	17.5	97
31	Hap4p overexpression in glucose-grown Saccharomyces cerevisiae induces cells to enter a novel metabolic state. Genome Biology, 2002, 4, R3.	9.6	90
32	Accurate and sensitive quantification of protein-DNA binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3692-E3701.	7.1	83
33	Predictive Modeling of Genome-Wide mRNA Expression: From Modules to Molecules. Annual Review of Biophysics and Biomolecular Structure, 2007, 36, 329-347.	18.3	75
34	Global Chromatin Domain Organization of the Drosophila Genome. PLoS Genetics, 2008, 4, e1000045.	3.5	72
35	SELEX-seq: A Method for Characterizing the Complete Repertoire of Binding Site Preferences for Transcription Factor Complexes. Methods in Molecular Biology, 2014, 1196, 255-278.	0.9	68
36	Systematic prediction of DNA shape changes due to CpG methylation explains epigenetic effects on protein–DNA binding. Epigenetics and Chromatin, 2018, 11, 6.	3.9	65

#	Article	IF	Citations
37	Nuclear Pore Component Nup98 Is a Potential Tumor Suppressor and Regulates Posttranscriptional Expression of Select p53 Target Genes. Molecular Cell, 2012, 48, 799-810.	9.7	57
38	Predicting functional transcription factor binding through alignment-free and affinity-based analysis of orthologous promoter sequences. Bioinformatics, 2008, 24, i165-i171.	4.1	54
39	TowardÂa Mechanistic Understanding of DNA Methylation Readout by Transcription Factors. Journal of Molecular Biology, 2020, 432, 1801-1815.	4.2	54
40	REDUCE: an online tool for inferring cis-regulatory elements and transcriptional module activities from microarray data. Nucleic Acids Research, 2003, 31, 3487-3490.	14.5	49
41	ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. Journal of Experimental Medicine, 2014, 211, 1623-1635.	8.5	49
42	HP1 controls genomic targeting of four novel heterochromatin proteins in Drosophila. EMBO Journal, 2007, 26, 741-751.	7.8	48
43	Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway. Molecular Biology of the Cell, 2012, 23, 2993-3007.	2.1	45
44	Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning. Nature Biotechnology, 2022, 40, 1520-1527.	17.5	38
45	Combinatorial control of diverse metabolic and physiological functions by transcriptional regulators of the yeast sulfur assimilation pathway. Molecular Biology of the Cell, 2012, 23, 3008-3024.	2.1	36
46	Inferring Condition-Specific Modulation of Transcription Factor Activity in Yeast through Regulon-Based Analysis of Genomewide Expression. PLoS ONE, 2008, 3, e3112.	2.5	35
47	A unified approach for quantifying and interpreting <scp>DNA</scp> shape readout by transcription factors. Molecular Systems Biology, 2018, 14, e7902.	7.2	35
48	Loss of Subcellular Lipid Transport Due to ARV1 Deficiency Disrupts Organelle Homeostasis and Activates the Unfolded Protein Response. Journal of Biological Chemistry, 2011, 286, 11951-11959.	3.4	34
49	The RNA backbone plays a crucial role in mediating the intrinsic stability of the GpU dinucleotide platform and the GpUpA/GpA miniduplex. Nucleic Acids Research, 2010, 38, 4868-4876.	14.5	32
50	SelexGLM differentiates androgen and glucocorticoid receptor DNA-binding preference over an extended binding site. Genome Research, 2018, 28, 111-121.	5.5	32
51	Building accurate sequence-to-affinity models from high-throughput in vitro protein-DNA binding data using FeatureREDUCE. ELife, 2015, 4, .	6.0	32
52	Identifying the genetic determinants of transcription factor activity. Molecular Systems Biology, 2010, 6, 412.	7.2	31
53	In vivo Hox binding specificity revealed by systematic changes to a single cis regulatory module. Nature Communications, 2019, 10, 3597.	12.8	27
54	Context-Dependent Gene Regulation by Homeodomain Transcription Factor Complexes Revealed by Shape-Readout Deficient Proteins. Molecular Cell, 2020, 78, 152-167.e11.	9.7	26

#	Article	lF	CITATIONS
55	Systematic in vitro profiling of off-target affinity, cleavage and efficiency for CRISPR enzymes. Nucleic Acids Research, 2020, 48, 5037-5053.	14.5	26
56	TransfactomeDB: a resource for exploring the nucleotide sequence specificity and condition-specific regulatory activity of trans-acting factors. Nucleic Acids Research, 2007, 36, D125-D131.	14.5	24
57	Transcription factor paralogs orchestrate alternative gene regulatory networks by context-dependent cooperation with multiple cofactors. Nature Communications, 2022, 13 , .	12.8	20
58	Dissecting complex transcriptional responses using pathway-level scores based on prior information. BMC Bioinformatics, 2007, 8, S6.	2.6	19
59	Transcription factor regulation of eQTL activity across individuals and tissues. PLoS Genetics, 2022, 18, e1009719.	3.5	14
60	Paired Hormone Response Elements Predict Caveolin-1 as a Glucocorticoid Target Gene. PLoS ONE, 2010, 5, e8839.	2.5	9
61	Harnessing Natural Sequence Variation to Dissect Posttranscriptional Regulatory Networks in Yeast. G3: Genes, Genomes, Genetics, 2014, 4, 1539-1553.	1.8	9
62	Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1835-43.	7.1	9
63	Identifying regulatory mechanisms underlying tumorigenesis using locus expression signature analysis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5747-5752.	7.1	7
64	DAF-16 and PQM-1: Partners in longevity. Aging, 2014, 6, 5-6.	3.1	6
65	Network-based approaches that exploit inferred transcription factor activity to analyze the impact of genetic variation on gene expression. Current Opinion in Systems Biology, 2017, 2, 98-102.	2.6	4
66	Characterizing a collective and dynamic component of chromatin immunoprecipitation enrichment profiles in yeast. BMC Genomics, 2014, 15, 494.	2.8	2
67	Recent progress in understanding transcription factor binding specificity. Briefings in Functional Genomics, 2015, 14, 1-2.	2.7	2