
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5876070/publications.pdf Version: 2024-02-01

TOPIL HOSODA

#	Article	IF	CITATIONS
1	A rotating cerium anode X-ray system allows visualization of intramural coronary vessels after cardiac stem cell therapy for myocardial infarction. Journal of Physiological Sciences, 2018, 68, 345-353.	2.1	0
2	Single-cell analysis of the fate of c-kit-positive bone marrow cells. Npj Regenerative Medicine, 2017, 2, 27.	5.2	14
3	Cardiovascular Stem Cell Niche. , 2017, , 93-109.		1
4	The proliferative potential of human cardiac stem cells was unaffected after a long-term cryopreservation of tissue blocks. Annals of Translational Medicine, 2017, 5, 41-41.	1.7	6
5	Adult Stem Cells in Tissue Maintenance and Regeneration. Stem Cells International, 2016, 2016, 1-2.	2.5	20
6	How do resident stem cells repair the damaged myocardium?. World Journal of Stem Cells, 2015, 7, 182.	2.8	5
7	Cardiac stem cell niches. Stem Cell Research, 2014, 13, 631-646.	0.7	68
8	Response to Letter Regarding Article "Inositol 1,4,5-Trisphosphate Receptors and Human Left Ventricular Myocytes― Circulation, 2014, 129, e510-1.	1.6	1
9	c-Kit–Positive Cardiac Stem Cells Nested in Hypoxic Niches Are Activated by Stem Cell Factor Reversing the Aging Myopathy. Circulation Research, 2014, 114, 41-55.	4.5	87
10	Myocyte renewal and therapeutic myocardial regeneration using various progenitor cells. Heart Failure Reviews, 2014, 19, 789-797.	3.9	7
11	Inositol 1, 4, 5-Trisphosphate Receptors and Human Left Ventricular Myocytes. Circulation, 2013, 128, 1286-1297.	1.6	65
12	Therapeutic Application of Cardiac Stem Cells and Other Cell Types. BioMed Research International, 2013, 2013, 1-6.	1.9	8
13	Dissecting the Molecular Relationship Among Various Cardiogenic Progenitor Cells. Circulation Research, 2013, 112, 1253-1262.	4.5	89
14	The mircrine mechanism controlling cardiac stem cell fate. Frontiers in Genetics, 2013, 4, 204.	2.3	12
15	Response to Bergmann et al: Carbon 14 Birth Dating of Human Cardiomyocytes. Circulation Research, 2012, 110, e19-e21.	4.5	7
16	Cardiomyogenesis in the Aging and Failing Human Heart. Circulation, 2012, 126, 1869-1881.	1.6	119
17	Cardiomyogenesis in the Developing Heart Is Regulated by C-Kit–Positive Cardiac Stem Cells. Circulation Research, 2012, 110, 701-715.	4.5	101
18	Tracking Chromatid Segregation to Identify Human Cardiac Stem Cells That Regenerate Extensively the Infarcted Myocardium. Circulation Research, 2012, 111, 894-906.	4.5	43

#	Article	IF	CITATIONS
19	C-kit-positive cardiac stem cells and myocardial regeneration. American Journal of Cardiovascular Disease, 2012, 2, 58-67.	0.5	48
20	Effects of Age and Heart Failure on Human Cardiac Stem Cell Function. American Journal of Pathology, 2011, 179, 349-366.	3.8	183
21	Human Cardiac Stem Cell Differentiation Is Regulated by a Mircrine Mechanism. Circulation, 2011, 123, 1287-1296.	1.6	193
22	Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, The, 2011, 378, 1847-1857.	13.7	1,241
23	Response to Letter Regarding Article, "Human Cardiac Stem Cell Differentiation Is Regulated by a Mircrine Mechanism― Circulation, 2011, 124, .	1.6	0
24	Role of stem cells in cardiovascular biology. Journal of Thrombosis and Haemostasis, 2011, 9, 151-161.	3.8	14
25	Evidence for Human Lung Stem Cells. New England Journal of Medicine, 2011, 364, 1795-1806.	27.0	358
26	Identification of a coronary stem cell in the human heart. Journal of Molecular Medicine, 2011, 89, 947-959.	3.9	11
27	The Ephrin A1–EphA2 System Promotes Cardiac Stem Cell Migration After Infarction. Circulation Research, 2011, 108, 1071-1083.	4.5	63
28	Functionally Competent Cardiac Stem Cells Can Be Isolated From Endomyocardial Biopsies of Patients With Advanced Cardiomyopathies. Circulation Research, 2011, 108, 857-861.	4.5	105
29	Insulin-Like Growth Factor-1 Receptor Identifies a Pool of Human Cardiac Stem Cells With Superior Therapeutic Potential for Myocardial Regeneration. Circulation Research, 2011, 108, 1467-1481.	4.5	111
30	Mechanisms of Myocardial Regeneration. Circulation Journal, 2010, 74, 13-17.	1.6	67
31	Cardiomyogenesis in the Adult Human Heart. Circulation Research, 2010, 107, 305-315.	4.5	284
32	Inhibition of Notch1-Dependent Cardiomyogenesis Leads to a Dilated Myopathy in the Neonatal Heart. Circulation Research, 2010, 107, 429-441.	4.5	79
33	Anthracycline Cardiomyopathy Is Mediated by Depletion of the Cardiac Stem Cell Pool and Is Rescued by Restoration of Progenitor Cell Function. Circulation, 2010, 121, 276-292.	1.6	239
34	Myocyte Turnover in the Aging Human Heart. Circulation Research, 2010, 107, 1374-1386.	4.5	260
35	Clonality of mouse and human cardiomyogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17169-17174.	7.1	130
36	Spontaneous Calcium Oscillations Regulate Human Cardiac Progenitor Cell Growth. Circulation Research, 2009, 105, 764-774.	4.5	86

#	Article	IF	CITATIONS
37	Progenitor Cells From the Explanted Heart Generate Immunocompatible Myocardium Within the Transplanted Donor Heart. Circulation Research, 2009, 105, 1128-1140.	4.5	33
38	Cardiac Progenitor Cells and Biotinylated Insulin-Like Growth Factor-1 Nanofibers Improve Endogenous and Exogenous Myocardial Regeneration After Infarction. Circulation, 2009, 120, 876-887.	1.6	209
39	Identification of a coronary vascular progenitor cell in the human heart. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15885-15890.	7.1	188
40	The Human Heart: A Selfâ€Renewing Organ. Clinical and Translational Science, 2008, 1, 80-86.	3.1	24
41	Cardiac stem cells and myocardial disease. Journal of Molecular and Cellular Cardiology, 2008, 45, 505-513.	1.9	97
42	Notch1 regulates the fate of cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15529-15534.	7.1	177
43	Myocardial Induction of Nucleostemin in Response to Postnatal Growth and Pathological Challenge. Circulation Research, 2008, 103, 89-97.	4.5	40
44	Local Activation or Implantation of Cardiac Progenitor Cells Rescues Scarred Infarcted Myocardium Improving Cardiac Function. Circulation Research, 2008, 103, 107-116.	4.5	266
45	Formation of large coronary arteries by cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1668-1673.	7.1	162
46	Activation of Cardiac Progenitor Cells Reverses the Failing Heart Senescent Phenotype and Prolongs Lifespan. Circulation Research, 2008, 102, 597-606.	4.5	178
47	The Young Mouse Heart Is Composed of Myocytes Heterogeneous in Age and Function. Circulation Research, 2007, 101, 387-399.	4.5	70
48	Adolescent Feline Heart Contains a Population of Small, Proliferative Ventricular Myocytes With Immature Physiological Properties. Circulation Research, 2007, 100, 536-544.	4.5	112
49	Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14068-14073.	7.1	925
50	Bone marrow cells adopt the cardiomyogenic fate <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17783-17788.	7.1	292
51	Concise Review: Stem Cells, Myocardial Regeneration, and Methodological Artifacts. Stem Cells, 2007, 25, 589-601.	3.2	133
52	Myocardial regeneration by exogenous and endogenous progenitor cells. Drug Discovery Today Disease Mechanisms, 2007, 4, 197-203.	0.8	13
53	Progenitor Cells and Cardiac Homeostasis. , 2007, , 537-550.		1
54	The Telomere–Telomerase Axis and the Heart. Antioxidants and Redox Signaling, 2006, 8, 2125-2141.	5.4	28

#	Article	IF	CITATIONS
55	Heart failure and regenerative cardiology. Regenerative Medicine, 2006, 1, 153-159.	1.7	3
56	Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9226-9231.	7.1	423
57	Diabetes Promotes Cardiac Stem Cell Aging and Heart Failure, Which Are Prevented by Deletion of the p66 ^{shc} Gene. Circulation Research, 2006, 99, 42-52.	4.5	327
58	Myocardial aging. Basic Research in Cardiology, 2005, 100, 482-493.	5.9	105
59	Cardiac Stem Cells Possess Growth Factor-Receptor Systems That After Activation Regenerate the Infarcted Myocardium, Improving Ventricular Function and Long-Term Survival. Circulation Research, 2005, 97, 663-673.	4.5	494
60	Bone Marrow Cells Differentiate in Cardiac Cell Lineages After Infarction Independently of Cell Fusion. Circulation Research, 2005, 96, 127-137.	4.5	456
61	The use of a supercooling refrigerator improves the preservation of organ grafts. Biochemical and Biophysical Research Communications, 2005, 337, 534-539.	2.1	34
62	Novel Point Mutation in the Cardiac Transcription Factor CSX/NKX2.5 Associated With Congenital Heart Disease Circulation Journal, 2002, 66, 561-563.	1.6	82
63	Dual effects of the homeobox transcription factor Csx/Nkx2–5 on cardiomyocytes. Biochemical and Biophysical Research Communications, 2002, 298, 493-500.	2.1	24
64	A Novel Myocyte-specific Gene MidoriPromotes the Differentiation of P19CL6 Cells into Cardiomyocytes. Journal of Biological Chemistry, 2001, 276, 35978-35989.	3.4	49
65	Smads, Tak1, and Their Common Target Atf-2 Play a Critical Role in Cardiomyocyte Differentiation. Journal of Cell Biology, 2001, 153, 687-698.	5.2	137
66	Bone Morphogenetic Proteins Induce Cardiomyocyte Differentiation through the Mitogen-Activated Protein Kinase Kinase Kinase TAK1 and Cardiac Transcription Factors Csx/Nkx-2.5 and GATA-4. Molecular and Cellular Biology, 1999, 19, 7096-7105.	2.3	220
67	Familial Atrial Septal Defect and Atrioventricular Conduction Disturbance Associated With a Point Mutation in the Cardiac Homeobox Gene <i>CSX/NKX2-5</i> in a Japanese Patient. Japanese Circulation Journal, 1999, 63, 425-426.	1.0	52
68	Molecular cloning of human homolog of yeastGAA1which is required for attachment of glycosylphosphatidylinositols to proteins1. FEBS Letters, 1998, 421, 252-258.	2.8	49
69	Assignment of the HumanGPAA1Cene, Which Encodes a Product Required for the Attachment of Glycosylphosphatidylinositols to Proteins, at 8q24. Genomics, 1998, 54, 354.	2.9	5