
Caroline P Slomp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5875561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 2004, 295, 64-86.	5.4	780
2	Hypoxia-Related Processes in the Baltic Sea. Environmental Science & Technology, 2009, 43, 3412-3420.	10.0	470
3	Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics, 2018, 56, 207-250.	23.0	354
4	Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology, 2003, 31, 993.	4.4	261
5	Evaluation of sinks and sources of CO ₂ in the global coastal ocean using a spatiallyâ€explicit typology of estuaries and continental shelves. Geophysical Research Letters, 2010, 37, .	4.0	253
6	Eutrophication-Driven Deoxygenation in the Coastal Ocean. Oceanography, 2014, 27, 172-183.	1.0	245
7	A key role for iron-bound phosphorus in authigenic apatite formation in North Atlantic continental platform sediments. Journal of Marine Research, 1996, 54, 1179-1205.	0.3	230
8	Synchronous basin-wide formation and redox-controlled preservation of a Mediterranean sapropel. Nature Geoscience, 2008, 1, 606-610.	12.9	230
9	Iron-Mediated Anaerobic Oxidation of Methane in Brackish Coastal Sediments. Environmental Science & Technology, 2015, 49, 277-283.	10.0	230
10	Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Marine Chemistry, 1996, 52, 55-73.	2.3	222
11	Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River Inputs to the Oceans. Estuaries and Coasts, 2011, 34, 441-458.	2.2	215
12	Global trends and uncertainties in terrestrial denitrification and N ₂ O emissions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130112.	4.0	205
13	Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models. Biogeosciences, 2013, 10, 1-22.	3.3	177
14	Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions. Geochimica Et Cosmochimica Acta, 2010, 74, 1350-1362.	3.9	176
15	Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the landâ€ocean transition. Global Biogeochemical Cycles, 2009, 23, .	4.9	158
16	Hypoxia in the Baltic Sea: Biogeochemical Cycles, Benthic Fauna, and Management. Ambio, 2014, 43, 26-36.	5.5	158
17	Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrology and Earth System Sciences, 2013, 17, 2029-2051.	4.9	157
18	A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology, 2012, 18, 422-434.	9.5	148

#	Article	IF	CITATIONS
19	The role of adsorption in sediment-water exchange of phosphate in North Sea continental margin sediments. Limnology and Oceanography, 1998, 43, 832-846.	3.1	147
20	Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea. Geochimica Et Cosmochimica Acta, 2013, 107, 155-169.	3.9	143
21	The global marine phosphorus cycle: sensitivity to oceanic circulation. Biogeosciences, 2007, 4, 155-171.	3.3	134
22	Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropel (S1). Geochimica Et Cosmochimica Acta, 2002, 66, 1171-1184.	3.9	132
23	Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13278-13283.	7.1	130
24	Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochimica Et Cosmochimica Acta, 2015, 169, 217-235.	3.9	128
25	Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling. Geochimica Et Cosmochimica Acta, 2008, 72, 3398-3412.	3.9	126
26	Sedimentary phosphorus dynamics and the evolution of bottomâ€water hypoxia: A coupled benthic–pelagic model of a coastal system. Limnology and Oceanography, 2011, 56, 1075-1092.	3.1	125
27	Coupled Dynamics of Iron and Phosphorus in Sediments of an Oligotrophic Coastal Basin and the Impact of Anaerobic Oxidation of Methane. PLoS ONE, 2013, 8, e62386.	2.5	123
28	Phosphogenesis and active phosphorite formation in sediments from the Arabian Sea oxygen minimum zone. Marine Geology, 2000, 169, 1-20.	2.1	120
29	Efficiency of the coastal filter: Nitrogen and phosphorus removal in the Baltic Sea. Limnology and Oceanography, 2017, 62, S222.	3.1	118
30	Tracking Baltic hypoxia and cod migration over millennia with natural tags. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E177-82.	7.1	116
31	Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. Climate of the Past, 2014, 10, 1421-1439.	3.4	115
32	Cable Bacteria Control Iron–Phosphorus Dynamics in Sediments of a Coastal Hypoxic Basin. Environmental Science & Technology, 2016, 50, 1227-1233.	10.0	112
33	Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer. Geochimica Et Cosmochimica Acta, 2009, 73, 6716-6726.	3.9	110
34	Hypoxia Sustains Cyanobacteria Blooms in the Baltic Sea. Environmental Science & Technology, 2014, 48, 2598-2602.	10.0	109
35	Iron and manganese cycling in different sedimentary environments on the North Sea continental margin. Continental Shelf Research, 1997, 17, 1083-1117.	1.8	108
36	Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochimica Et Cosmochimica Acta, 2006, 70, 2836-2855.	3.9	108

#	Article	IF	CITATIONS
37	Geochemistry as an aid in archaeological prospection and site interpretation: current issues and research directions. Archaeological Prospection, 2009, 16, 35-51.	2.2	107
38	Controls on phosphorus regeneration and burial during formation of eastern Mediterranean sapropels. Marine Geology, 2004, 203, 141-159.	2.1	106
39	Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles. Biogeosciences, 2011, 8, 1699-1720.	3.3	106
40	Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea. Biogeosciences, 2012, 9, 2603-2624.	3.3	95
41	Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochimica Et Cosmochimica Acta, 2017, 207, 256-276.	3.9	95
42	A perturbed hydrological cycle during Oceanic Anoxic Event 2. Geology, 2014, 42, 123-126.	4.4	94
43	Nitrogen cycling in North Sea sediments: interaction of denitrification and nitrification in offshore and coastal areas. Marine Ecology - Progress Series, 1993, 101, 283-296.	1.9	89
44	pH-Dependent iron oxide precipitation in a subterranean estuary. Journal of Geochemical Exploration, 2006, 88, 399-403.	3.2	86
45	Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea. Chemical Geology, 2016, 438, 58-72.	3.3	80
46	Sediment-water fluxes of inorganic nitrogen compounds along the transport route of organic matter in the North Sea. Ophelia, 1995, 41, 173-197.	0.3	79
47	Pyrite oxidation during sample storage determines phosphorus fractionation in carbonate-poor anoxic sediments. Geochimica Et Cosmochimica Acta, 2009, 73, 3277-3290.	3.9	75
48	Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin. Biogeosciences, 2015, 12, 1561-1583.	3.3	75
49	lsotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer. Chemical Geology, 2012, 300-301, 123-132.	3.3	74
50	Geochemistry of trace metals in a fresh water sediment: Field results and diagenetic modeling. Science of the Total Environment, 2007, 381, 263-279.	8.0	73
51	Impact of cable bacteria on sedimentary iron and manganese dynamics in a seasonally-hypoxic marine basin. Geochimica Et Cosmochimica Acta, 2016, 192, 49-69.	3.9	70
52	Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea. Biogeosciences, 2016, 13, 5333-5355.	3.3	69
53	Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295, 42-54.	2.3	68
54	Phosphorus burial in sediments of the sulfidic deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis. Geochimica Et Cosmochimica Acta, 2017, 204, 140-158.	3.9	68

#	Article	IF	CITATIONS
55	Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments. PLoS ONE, 2016, 11, e0161609.	2.5	67
56	Authigenic P formation and reactive P burial in sediments of the Nazaré canyon on the Iberian margin (NE Atlantic). Marine Geology, 2002, 185, 379-392.	2.1	65
57	Modeling phosphorus cycling and carbon burial during Cretaceous Oceanic Anoxic Events. Earth and Planetary Science Letters, 2009, 286, 71-79.	4.4	65
58	Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization. Water Research, 2007, 41, 3061-3068.	11.3	64
59	Rapid high-amplitude variability in Baltic Sea hypoxia during the Holocene. Geology, 2013, 41, 1183-1186.	4.4	64
60	Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redoxâ€gradient. Limnology and Oceanography, 2011, 56, 2018-2026.	3.1	63
61	Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments. Frontiers in Microbiology, 2021, 12, 631621.	3.5	62
62	Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio, 2020, 49, 1194-1210.	5.5	61
63	Ironâ€dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact. Limnology and Oceanography, 2016, 61, S267.	3.1	59
64	Ocean Circulation in the Toarcian (Early Jurassic): A Key Control on Deoxygenation and Carbon Burial on the European Shelf. Paleoceanography and Paleoclimatology, 2018, 33, 994-1012.	2.9	59
65	Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients. Water Resources Research, 2008, 44, .	4.2	58
66	Modelling the geochemical fate and transport of wastewater-derived phosphorus in contrasting groundwater systems. Journal of Contaminant Hydrology, 2007, 92, 87-108.	3.3	57
67	Effects of site lithology on geochemical signatures of human occupation in archaeological house plans in the Netherlands. Journal of Archaeological Science, 2009, 36, 1215-1228.	2.4	57
68	Oxidation and Origin of Organic Matter in Surficial Eastern Mediterranean Hemipelagic Sediments. Aquatic Geochemistry, 2002, 8, 153-175.	1.3	55
69	Sedimentary organic carbon to phosphorus ratios as a redox proxy in Quaternary records from the Mediterranean. Chemical Geology, 2010, 277, 167-177.	3.3	49
70	Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments. Earth and Planetary Science Letters, 2016, 434, 241-251.	4.4	49
71	Exchange catalysis during anaerobic methanotrophy revealed by 12CH2D2 and 13CH3D in methane. Geochemical Perspectives Letters, 0, , 26-30.	5.0	46
72	Hypoxiaâ€driven variations in iron and manganese shuttling in the Baltic Sea over the past 8 kyr. Geochemistry, Geophysics, Geosystems, 2015, 16, 3754-3766.	2.5	45

#	Article	IF	CITATIONS
73	Are Iron-Phosphate Minerals a Sink for Phosphorus in Anoxic Black Sea Sediments?. PLoS ONE, 2014, 9, e101139.	2.5	45
74	Are recent changes in sediment manganese sequestration in the euxinic basins of the Baltic Sea linked to the expansion of hypoxia?. Biogeosciences, 2015, 12, 4875-4894.	3.3	44
75	Abundance and Biogeochemical Impact of Cable Bacteria in Baltic Sea Sediments. Environmental Science & Technology, 2019, 53, 7494-7503.	10.0	43
76	The shelf-to-basin iron shuttle in the Black Sea revisited. Chemical Geology, 2019, 511, 314-341.	3.3	42
77	Redox-dependent changes in manganese speciation in Baltic Sea sediments from the Holocene Thermal Maximum: An EXAFS, XANES and LA-ICP-MS study. Chemical Geology, 2014, 370, 49-57.	3.3	40
78	Neglecting sinks for N ₂ O at the earth's surface: does it matter?. Journal of Integrative Environmental Sciences, 2010, 7, 79-87.	2.5	39
79	Phosphate adsorption in oxidized marine sediments. Chemical Geology, 1993, 107, 477-480.	3.3	37
80	A quantitative reconstruction of organic matter and nutrient diagenesis in Mediterranean Sea sediments over the Holocene. Geochimica Et Cosmochimica Acta, 2011, 75, 5540-5558.	3.9	37
81	Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial. Biogeosciences, 2018, 15, 6979-6996.	3.3	37
82	A Mössbauer spectroscopic study of the iron redox transition in eastern Mediterranean sediments. Geochimica Et Cosmochimica Acta, 2005, 69, 441-453.	3.9	36
83	Spatial extent and degree of oxygen depletion in the deep protoâ€ <scp>N</scp> orth <scp>A</scp> tlantic basin during <scp>O</scp> ceanic <scp>A</scp> noxic <scp>E</scp> vent 2. Geochemistry, Geophysics, Geosystems, 2014, 15, 4254-4266.	2.5	35
84	Post-depositional formation of vivianite-type minerals alters sediment phosphorus records. Biogeosciences, 2018, 15, 861-883.	3.3	35
85	Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3. Microbial Ecology, 2017, 74, 608-622.	2.8	34
86	Florisphaera profundaand the origin and diagenesis of carbonate phases in eastern Mediterranean sapropel units. Paleoceanography, 2004, 19, n/a-n/a.	3.0	33
87	Phyto_ and zooplankton paleofluxes during the deposition of sapropel S1 (eastern Mediterranean): Biogenic carbonate preservation and paleoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235, 8-27.	2.3	33
88	Molybdenum dynamics in sediments of a seasonally-hypoxic coastal marine basin. Chemical Geology, 2017, 466, 627-640.	3.3	33
89	Mnâ^•Ca intra- and inter-test variability in the benthic foraminifer <i>Ammonia tepida</i> . Biogeosciences, 2018, 15, 331-348.	3.3	33
90	Impact of natural re-oxygenation on the sediment dynamics of manganese, iron and phosphorus in a euxinic Baltic Sea basin. Geochimica Et Cosmochimica Acta, 2019, 246, 174-196.	3.9	33

#	Article	IF	CITATIONS
91	Long-term controls on ocean phosphorus and oxygen in a global biogeochemical model. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	32
92	Phosphorus Cycling in the Estuarine and Coastal Zones. , 2011, , 201-229.		32
93	Characterization of phosphorus species in sediments from the Arabian Sea oxygen minimum zone: Combining sequential extractions and X-ray spectroscopy. Marine Chemistry, 2015, 168, 1-8.	2.3	32
94	Anthropogenic and climatic impacts on a coastal environment in the Baltic Sea over the last 1000 years. Anthropocene, 2018, 21, 66-79.	3.3	32
95	Phosphorus dynamics in and below the redoxcline in the Black Sea and implications for phosphorus burial. Geochimica Et Cosmochimica Acta, 2018, 222, 685-703.	3.9	32
96	Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact. Geology, 2018, 46, 683-686.	4.4	32
97	Clacialâ€interglacial variations in marine phosphorus cycling: Implications for ocean productivity. Global Biogeochemical Cycles, 2008, 22, .	4.9	29
98	Impact of changes in river fluxes of silica on the global marine silicon cycle: a model comparison. Biogeosciences, 2010, 7, 441-453.	3.3	29
99	Phosphorus diagenesis in deep-sea sediments: Sensitivity to water column conditions and global scale implications. Chemical Geology, 2012, 330-331, 127-139.	3.3	28
100	Glacio-isostatic control on hypoxia in a high-latitude shelf basin. Geology, 2015, 43, 427-430.	4.4	28
101	The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiology Ecology, 2018, 94, .	2.7	28
102	Hypoxia in the Holocene Baltic Sea: Comparing modern versus past intervals using sedimentary trace metals. Chemical Geology, 2018, 493, 478-490.	3.3	27
103	Rapid and Extensive Alteration of Phosphorus Speciation during Oxic Storage of Wet Sediment Samples. PLoS ONE, 2014, 9, e96859.	2.5	26
104	Reconstructing Holocene temperature and salinity variations in theÂwestern Baltic Sea region: a multi-proxy comparison from theÂLittleÂBelt (IODP ExpeditionÂ347, SiteÂM0059). Biogeosciences, 2017, 14, 5607-5632.	3.3	26
105	Fossil record of holococcoliths and selected hetero-holococcolith associations from the Mediterranean (Holocene–late Pleistocene): Evaluation of carbonate diagenesis and palaeoecological–palaeocenographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237, 191-212.	2.3	25
106	Geochemical and mineralogical investigation of domestic archaeological soil features at the Tiel-Passewaaij site, The Netherlands. Journal of Geochemical Exploration, 2009, 101, 155-165.	3.2	24
107	Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic Sea. Biogeosciences, 2020, 17, 2745-2766.	3.3	24
108	Reactive-Transport modeling as a technique for understanding coupled biogeochemical processes in surface and subsurface environments. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2003, 82, 5-18.	0.9	23

#	Article	IF	CITATIONS
109	Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input. Biogeosciences, 2014, 11, 977-993.	3.3	23
110	Seasonal hypoxia was a natural feature of the coastal zone in the Little Belt, Denmark, during the past 8 ka. Marine Geology, 2017, 387, 45-57.	2.1	23
111	Nitrogen processes in coastal and marine ecosystems. , 2011, , 147-176.		22
112	Microbial community composition and functional potential in Bothnian Sea sediments is linked to Fe and S dynamics and the quality of organic matter. Limnology and Oceanography, 2020, 65, S113.	3.1	22
113	Enhanced Organic Carbon Burial in Sediments of Oxygen Minimum Zones Upon Ocean Deoxygenation. Frontiers in Marine Science, 2020, 6, .	2.5	22
114	Biogeochemical functioning of the Baltic Sea. Earth System Dynamics, 2022, 13, 633-685.	7.1	22
115	Evolving coastal character of a Baltic Sea inlet during the Holocene shoreline regression: impact on coastal zone hypoxia. Journal of Paleolimnology, 2016, 55, 319-338.	1.6	21
116	Sedimentary oxygen dynamics in a seasonally hypoxic basin. Limnology and Oceanography, 2017, 62, 452-473.	3.1	20
117	Foraminiferal community response to seasonal anoxia in Lake Grevelingen (the Netherlands). Biogeosciences, 2020, 17, 1415-1435.	3.3	20
118	Controls on the shuttling of manganese over the northwestern Black Sea shelf and its fate in the euxinic deep basin. Geochimica Et Cosmochimica Acta, 2020, 273, 177-204.	3.9	19
119	Abnormal carbonate diagenesis in Holocene–late Pleistocene sapropel-associated sediments from the Eastern Mediterranean; evidence from Emiliania huxleyi coccolith morphology. Marine Micropaleontology, 2004, 52, 217-240.	1.2	18
120	The nitrogen isotope composition of sediments from the protoâ€North Atlantic during Oceanic Anoxic Event 2. Paleoceanography, 2015, 30, 923-937.	3.0	18
121	Sedimentary alkalinity generation and long-term alkalinity development in the Baltic Sea. Biogeosciences, 2019, 16, 437-456.	3.3	18
122	Controls on the onset and termination of past hypoxia in the Baltic Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490, 347-354.	2.3	17
123	Coastal hypoxia and eutrophication as key controls on benthic release and water column dynamics of iron and manganese. Limnology and Oceanography, 2021, 66, 807-826.	3.1	17
124	Does microbial stoichiometry modulate eutrophication of aquatic ecosystems?. Environmental Microbiology, 2013, 15, 1572-1579.	3.8	16
125	Enrichment of novel <i>Verrucomicrobia</i> , <i>Bacteroidetes</i> , and <i>Krumholzibacteria</i> in an oxygenâ€limited methaneâ€eand ironâ€fed bioreactor inoculated with Bothnian Sea sediments. MicrobiologyOpen, 2021, 10, e1175.	3.0	16
126	Biogeochemical impact of cable bacteria on coastal Black Sea sediment. Biogeosciences, 2020, 17, 5919-5938.	3.3	15

#	Article	IF	CITATIONS
127	The effect of deposition of organic matter on phosphorus dynamics in experimental marine sediment systems. Hydrobiologia, 1993, 253, 83-98.	2.0	14
128	Phosphorus Cycling and Burial in Sediments of a Seasonally Hypoxic Marine Basin. Estuaries and Coasts, 2018, 41, 921-939.	2.2	13
129	Understanding Environmental Changes in Temperate Coastal Seas: Linking Models of Benthic Fauna to Carbon and Nutrient Fluxes. Frontiers in Marine Science, 2020, 7, .	2.5	13
130	Modeling nitrogen cycling in a coastal fresh water sediment. Hydrobiologia, 2007, 584, 27-36.	2.0	12
131	Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation. Biogeosciences, 2010, 7, 1973-1982.	3.3	12
132	Effect of Redox Conditions on Bacterial Community Structure in Baltic Sea Sediments with Contrasting Phosphorus Fluxes. PLoS ONE, 2014, 9, e92401.	2.5	12
133	Holocene Refreshening and Reoxygenation of a Bothnian Sea Estuary Led to Enhanced Phosphorus Burial. Estuaries and Coasts, 2018, 41, 139-157.	2.2	12
134	Coupled dynamics of iron, manganese, and phosphorus in brackish coastal sediments populated by cable bacteria. Limnology and Oceanography, 2021, 66, 2611-2631.	3.1	12
135	Effects of the Santorini (Thera) eruption on manganese behavior in Holocene sediments of the eastern Mediterranean. Earth and Planetary Science Letters, 2006, 241, 188-201.	4.4	11
136	Phosphorus burial in vivianite-type minerals in methane-rich coastal sediments. Marine Chemistry, 2021, 231, 103948.	2.3	11
137	A sequential extraction procedure for particulate manganese and its application to coastal marine sediments. Chemical Geology, 2021, 584, 120538.	3.3	11
138	Enhanced phosphorus recycling during past oceanic anoxia amplified by low rates of apatite authigenesis. Science Advances, 2022, 8, .	10.3	11
139	Model-Based Integration and Analysis of Biogeochemical and Isotopic Dynamics in a Nitrate-Polluted Pyritic Aquifer. Environmental Science & Technology, 2013, 47, 130909083606007.	10.0	10
140	Reconstructing the history of euxinia in a coastal sea. Geology, 2013, 41, 523-524.	4.4	10
141	Glacial-interglacial variability in ocean oxygen and phosphorus in a global biogeochemical model. Biogeosciences, 2013, 10, 945-958.	3.3	8
142	Mn/Ca ratios of Ammonia tepida as a proxy for seasonal coastal hypoxia. Chemical Geology, 2019, 518, 55-66.	3.3	7
143	Turbidite deposition and diagenesis in the southwestern Black Sea: Implications for biogeochemical cycling in an anoxic basin. Marine Chemistry, 2019, 209, 48-61.	2.3	7
144	Biogeochemical evolution and organic carbon deposition on the Northwestern European Shelf during the Toarcian Ocean Anoxic Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 565, 110191.	2.3	7

145Evtrophication and Dooxygenation Forcing of Marginal Marine Organic Carbon Burial During the PETM. Paleoceanography and Paleoclimatology, 2022, 37, .2.97146Enhanced N2-fixation and NH4+ recycling during oceanic anoxic event 2 in the proto-North Atlantic. Ceochemistry, Geophysics, Geosystems, 2014, 15, 4064-4078.2.66147Recovery from multiaGmillennial natural coastal hypoxia in the Stockholm Archipelago, Baltic Sea. terminated by modern human activity. Limnology and Oceanography, 2020, 65, 3085-3097.3.16148Sediments as a Source of Iron, Manganese, Cobalt and Nickel to Continental Shelf Waters (Louisiana.) TJ ETQeQ0 02;;gBT /Ovgrlock 10 T Palaeogeography, Palaeocclimatology, Palaeoccology, 2022, 599, 111057.2.36149A historical record of benthic foraminifera in seasonally anoxic Lake Grevelingen, the Netherlands. Palaeogeography, Palaeocclimatology, 2022, 599, 111057.2.36150Phylogenetic Characterization of Phosphatase-Expressing Bacterial Communities in Baltic Sea Sediments. Microbes and Environments, 2015, 30, 192-195.1.64151IronáCPhosphorus Feedbacks Drive Multidecadal Oscillations in Baltic Sea Hypoxia. Geophysical Biogeosciences, 2021, 148, 5491-5511.2.7.83153Microbal activity, methane production, and carbon storage In Early Holocene North Sea peats. Biogeosciences, 2021, 18, 5491-5511.3.11154A reply to the comment by Karlsson et al. Limnology and Oceanography, 2019, 64, 1832-1833.3.11	#	Article	IF	CITATIONS
148Geochemistry, Geophysics, Geosystems, 2014, 15, 4064-4078.2.38147Recovery from multiä€millennial natural coastal hypoxia in the Stockholm Archipelago, Baltic Sea, terminated by modern human activity. Linnology and Oceanography, 2020, 65, 3085-3097.3.16148Sediments as a Source of Iron, Manganese, Cobalt and Nickel to Continental Shelf Waters (Louisiana,) Tj ETQq0 0 0 grgBT /Ovgrlock 10 T149Ahistorical record of benthic foraminifera in seasonally anoxic Lake Grevelingen, the Netherlands. Palaeogeography, Palaeoclimatology, Palaeoccology, 2022, 599, 111057.2.36150Phylogenetic Characterization of Phosphatase-Expressing Bacterial Communities in Baltic Sea Sediments. Microbes and Environments, 2015, 30, 192-195.1.64151Ironă¢Phosphorus Feedbacks Drive Multidecadal Oscillations in Baltic Sea Hypoxia. Geophysical Research Letters, 2021, 48, e2021CL095908.27.83153Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats. Biogeosciences, 2021, 18, 5491-5511.3.33	145	Eutrophication and Deoxygenation Forcing of Marginal Marine Organic Carbon Burial During the PETM. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	7
147terminafed by modern human activity. Limnology and Oceanography, 2020, 65, 3085-3097.3.16148Sediments as a Source of Iron, Manganese, Cobalt and Nickel to Continental Shelf Waters (Louisiana,) Tj ETQq0 0 grgBT /Ovgrlock 10 T149A historical record of benthic foraminifera in seasonally anoxic Lake Grevelingen, the Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 599, 111057.2.36150Phylogenetic Characterization of Phosphatase-Expressing Bacterial Communities in Baltic Sea Sediments. Microbes and Environments, 2015, 30, 192-195.1.64151IronâCPhosphorus Feedbacks Drive Multidecadal Oscillations in Baltic Sea Hypoxia. Ceophysical Research Letters, 2021, 48, e2021CL095908.4.04152Give more priority to phosphorus studies. Nature, 2011, 478, 459-459.27.83153Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats. Biogeosciences, 2021, 18, 5491-5511.3.33	146	Enhanced N2-fixation and NH4+ recycling during oceanic anoxic event 2 in the proto-North Atlantic. Geochemistry, Geophysics, Geosystems, 2014, 15, 4064-4078.	2.5	6
1101101101100149A historical record of benthic foraminifera in seasonally anoxic Lake Grevelingen, the Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 599, 111057.2.36150Phylogenetic Characterization of Phosphatase-Expressing Bacterial Communities in Baltic Sea Sediments. Microbes and Environments, 2015, 30, 192-195.1.64151Ironá <phosphorus baltic="" drive="" feedbacks="" geophysical<br="" hypoxia.="" in="" multidecadal="" oscillations="" sea=""></phosphorus> Research Letters, 2021, 48, e2021GL095908.4.04152Give more priority to phosphorus studies. Nature, 2011, 478, 459-459.27.83153Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats. Biogeosciences, 2021, 18, 5491-5511.3.33	147		3.1	6
149Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 599, 111057.2.36150Phylogenetic Characterization of Phosphatase-Expressing Bacterial Communities in Baltic Sea Sediments. Microbes and Environments, 2015, 30, 192-195.1.64151Ironâ <phosphorus baltic="" drive="" feedbacks="" geophysical<br="" hypoxia.="" in="" multidecadal="" oscillations="" sea=""></phosphorus> Research Letters, 2021, 48, e2021GL095908.4.04152Give more priority to phosphorus studies. Nature, 2011, 478, 459-459.27.83153Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats.3.33	148	Sediments as a Source of Iron, Manganese, Cobalt and Nickel to Continental Shelf Waters (Louisiana,) Tj ETQq0 (0 o rgBT /0 2.5	Overlock 10 T
150Sediments. Microbes and Environments, 2015, 30, 192-195.164151Ironâ€Phosphorus Feedbacks Drive Multidecadal Oscillations in Baltic Sea Hypoxia. Geophysical Research Letters, 2021, 48, e2021GL095908.4.04152Give more priority to phosphorus studies. Nature, 2011, 478, 459-459.27.83153Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats.3.33	149		2.3	6
151Research Letters, 2021, 48, e2021GL095908.4.04152Give more priority to phosphorus studies. Nature, 2011, 478, 459-459.27.83153Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats.3.33	150		1.6	4
Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats. 3.3 3 Biogeosciences, 2021, 18, 5491-5511.	151		4.0	4
¹⁵³ Biogeosciences, 2021, 18, 5491-5511. 3.3 3	152	Give more priority to phosphorus studies. Nature, 2011, 478, 459-459.	27.8	3
A reply to the comment by Karlsson et al Limnology and Oceanography, 2019, 64, 1832-1833. 3.1 1	153		3.3	3
	154	A reply to the comment by Karlsson et al Limnology and Oceanography, 2019, 64, 1832-1833.	3.1	1

Modeling nitrogen cycling in a coastal fresh water sediment. , 2007, , 27-36.