
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5875373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In vivo liquid–liquid phase separation protects amyloidogenic and aggregationâ€prone peptides during overexpression in <scp><i>Escherichia coli</i></scp> . Protein Science, 2022, 31, e4292.	7.6	10
2	Recombinant Spider Silk Protein and Delignified Wood Form a Strong Adhesive System. ACS Sustainable Chemistry and Engineering, 2022, 10, 552-561.	6.7	12
3	Emergence of Elastic Properties in a Minimalist Resilinâ€Derived Heptapeptide upon Bromination. Small, 2022, 18, .	10.0	5
4	On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes. Cellulose, 2022, 29, 6109-6121.	4.9	10
5	Liquid–Liquid Phase Separation and Assembly of Silk-like Proteins is Dependent on the Polymer Length. Biomacromolecules, 2022, 23, 3142-3153.	5.4	10
6	Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum. International Journal of Biological Macromolecules, 2022, 215, 691-704.	7.5	13
7	Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. Advanced Materials, 2021, 33, e2004349.	21.0	212
8	Effect of oxidation on cellulose and water structure: a molecular dynamics simulation study. Cellulose, 2021, 28, 3917-3933.	4.9	16
9	Interfacial Crystallization and Supramolecular Self-Assembly of Spider Silk Inspired Protein at the Water-Air Interface. Materials, 2021, 14, 4239.	2.9	6
10	Self-Assembly of Silk-like Protein into Nanoscale Bicontinuous Networks under Phase-Separation Conditions. Biomacromolecules, 2021, 22, 690-700.	5.4	10
11	Controllable coacervation of recombinantly produced spider silk protein using kosmotropic salts. Journal of Colloid and Interface Science, 2020, 560, 149-160.	9.4	28
12	Modulating the Mechanical Performance of Macroscale Fibers through Shearâ€Induced Alignment and Assembly of Protein Nanofibrils. Small, 2020, 16, e1904190.	10.0	39
13	Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules, 2020, 21, 1875-1885.	5.4	75
14	Analyzing the weak dimerization of a cellulose binding module by analytical ultracentrifugation. International Journal of Biological Macromolecules, 2020, 163, 1995-2004.	7.5	10
15	Sea star-inspired recombinant adhesive proteins self-assemble and adsorb on surfaces in aqueous environments to form cytocompatible coatings. Acta Biomaterialia, 2020, 112, 62-74.	8.3	16
16	Different effects of carbohydrate binding modules on the viscoelasticity of nanocellulose gels. Biochemistry and Biophysics Reports, 2020, 22, 100766.	1.3	5
17	Bioengineering. , 2020, , 193-208.		0
18	Modular protein architectures for pH-dependent interactions and switchable assembly of nanocellulose. International Journal of Biological Macromolecules, 2019, 137, 270-276.	7.5	5

#	Article	IF	CITATIONS
19	Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements. Science Advances, 2019, 5, eaaw2541.	10.3	73
20	Binding Forces of Cellulose Binding Modules on Cellulosic Nanomaterials. Biomacromolecules, 2019, 20, 769-777.	5.4	29
21	Dynamic Assembly of Class II Hydrophobins from T. reesei at the Air–Water Interface. Langmuir, 2019, 35, 9202-9212.	3.5	6
22	Self-Assembling Protein–Polymer Bioconjugates for Surfaces with Antifouling Features and Low Nonspecific Binding. ACS Applied Materials & Interfaces, 2019, 11, 3599-3608.	8.0	21
23	Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility. European Polymer Journal, 2019, 112, 334-345.	5.4	34
24	Molecular crowding facilitates assembly of spidroin-like proteins through phase separation. European Polymer Journal, 2019, 112, 539-546.	5.4	28
25	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	21.0	493
26	Controlled biocide release from hierarchically-structured biogenic silica: surface chemistry to tune release rate and responsiveness. Scientific Reports, 2018, 8, 5555.	3.3	35
27	Inâ€solution antibody harvesting with a plantâ€produced hydrophobin–Protein A fusion. Plant Biotechnology Journal, 2018, 16, 404-414.	8.3	10
28	Modification of carbon nanotubes by amphiphilic glycosylated proteins. Journal of Colloid and Interface Science, 2018, 512, 318-324.	9.4	11
29	Evaluating the potential of natural surfactants in the petroleum industry: the case of hydrophobins. Pure and Applied Chemistry, 2018, 90, 305-314.	1.9	22
30	Silica–gentamicin nanohybrids: combating antibiotic resistance, bacterial biofilms, and in vivo toxicity. International Journal of Nanomedicine, 2018, Volume 13, 7939-7957.	6.7	18
31	Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin. PLoS ONE, 2018, 13, e0197875.	2.5	6
32	Interfacial Behavior of Recombinant Spider Silk Protein Parts Reveals Cues on the Silk Assembly Mechanism. Langmuir, 2018, 34, 11795-11805.	3.5	19
33	Self-Coacervation of a Silk-Like Protein and Its Use As an Adhesive for Cellulosic Materials. ACS Macro Letters, 2018, 7, 1120-1125.	4.8	29
34	Phase transitions as intermediate steps in the formation of molecularly engineered protein fibers. Communications Biology, 2018, 1, 86.	4.4	59
35	Controlled communication between physically separated bacterial populations in a microfluidic device. Communications Biology, 2018, 1, 97.	4.4	24
36	Coacervation of resilin fusion proteins containing terminal functionalities. Colloids and Surfaces B: Biointerfaces, 2018, 171, 590-596.	5.0	12

#	Article	IF	CITATIONS
37	Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation. Biomacromolecules, 2017, 18, 898-905.	5.4	57
38	The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII. Colloids and Surfaces B: Biointerfaces, 2017, 155, 111-117.	5.0	7
39	Elastic and pH-Responsive Hybrid Interfaces Created with Engineered Resilin and Nanocellulose. Biomacromolecules, 2017, 18, 1866-1873.	5.4	21
40	Oscillating Ferrofluid Droplet Microrheology of Liquid-Immersed Sessile Droplets. Langmuir, 2017, 33, 6300-6306.	3.5	16
41	Retention of lysozyme activity by physical immobilization in nanocellulose aerogels and antibacterial effects. Cellulose, 2017, 24, 2837-2848.	4.9	36
42	Aligning cellulose nanofibril dispersions for tougher fibers. Scientific Reports, 2017, 7, 11860.	3.3	79
43	High-yield fermentation and a novel heat-precipitation purification method for hydrophobin HGFI from Grifola frondosa in Pichia pastoris. Protein Expression and Purification, 2016, 128, 22-28.	1.3	19
44	Binding of cellulose binding modules reveal differences between cellulose substrates. Scientific Reports, 2016, 6, 35358.	3.3	30
45	Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides. Biomacromolecules, 2016, 17, 1458-1465.	5.4	27
46	Graphene Biosensor Programming with Genetically Engineered Fusion Protein Monolayers. ACS Applied Materials & Interfaces, 2016, 8, 8257-8264.	8.0	54
47	An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma. Journal of Proteomics, 2016, 137, 52-58.	2.4	25
48	Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins. PLoS ONE, 2016, 11, e0164032.	2.5	14
49	Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterials. Angewandte Chemie - International Edition, 2015, 54, 12025-12028.	13.8	23
50	Hydrophobin as a Nanolayer Primer That Enables the Fluorinated Coating of Poorly Reactive Polymer Surfaces. Advanced Materials Interfaces, 2015, 2, 1500170.	3.7	17
51	Recipe for squid beak. Nature Chemical Biology, 2015, 11, 455-456.	8.0	8
52	The Effect of Hydrophobin Protein on Conductive Properties of Carbon Nanotube Field-Effect Transistors: First Study on Sensing Mechanism. Journal of Nanoscience and Nanotechnology, 2015, 15, 2079-2087.	0.9	2
53	Ohmic resistance of nickel infiltrated chromium oxide scales in solid oxide fuel cell metallic interconnects. Solid State Ionics, 2015, 283, 38-51.	2.7	4
54	Interaction of transglutaminase with adsorbed and spread films of β-casein and Đº-casein. Colloids and Surfaces B: Biointerfaces, 2015, 128, 254-260.	5.0	11

#	Article	IF	CITATIONS
55	A synthetically modified hydrophobin showing enhanced fluorous affinity. Journal of Colloid and Interface Science, 2015, 448, 140-147.	9.4	9
56	A model-based approach for current voltage analyses to quantify degradation and fuel distribution in solid oxide fuel cell stacks. Journal of Power Sources, 2015, 288, 409-418.	7.8	12
57	Hydrophobins as aqueous lubricant additive for a soft sliding contact. Colloids and Surfaces B: Biointerfaces, 2015, 125, 264-269.	5.0	9
58	Charge-Based Engineering of Hydrophobin HFBI: Effect on Interfacial Assembly and Interactions. Biomacromolecules, 2015, 16, 1283-1292.	5.4	29
59	Engineering of the Function of Diamond-like Carbon Binding Peptides through Structural Design. Biomacromolecules, 2015, 16, 476-482.	5.4	4
60	Enhanced Plastic Deformations of Nanofibrillated Cellulose Film by Adsorbed Moisture and Protein-Mediated Interactions. Biomacromolecules, 2015, 16, 311-318.	5.4	28
61	Hydrophobin Film Structure for HFBI and HFBII and Mechanism for Accelerated Film Formation. PLoS Computational Biology, 2014, 10, e1003745.	3.2	27
62	Electrochemical properties of honeycomb-like structured HFBI self-organized membranes on HOPG electrodes. Colloids and Surfaces B: Biointerfaces, 2014, 123, 803-808.	5.0	8
63	Effect of operational conditions and environment on lubricity of hydrophobins in water based lubrication systems. Tribology - Materials, Surfaces and Interfaces, 2014, 8, 241-247.	1.4	2
64	Engineered Hydrophobin for Biomimetic Mineralization of Functional Calcium Carbonate Microparticles. Journal of Biomaterials and Nanobiotechnology, 2014, 05, 1-7.	0.5	7
65	Formation of ceramophilic chitin and biohybrid materials enabled by a genetically engineered bifunctional protein. Chemical Communications, 2014, 50, 7348-7351.	4.1	12
66	Model-based prediction of the ohmic resistance of metallic interconnects from oxide scale growth based on scanning electron microscopy. Journal of Power Sources, 2014, 272, 595-605.	7.8	14
67	The Structural Basis for Function in Diamond-like Carbon Binding Peptides. Langmuir, 2014, 30, 8798-8802.	3.5	5
68	Molecular engineering of avidin and hydrophobin for functional self-assembling interfaces. Colloids and Surfaces B: Biointerfaces, 2014, 120, 102-109.	5.0	9
69	Structural characterization and tribological evaluation of quince seed mucilage. Tribology International, 2014, 77, 24-31.	5.9	37
70	Evaluation of drug interactions with nanofibrillar cellulose. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1238-1244.	4.3	52
71	Kinetic and Equilibrium Aspects of Adsorption and Desorption of Class II Hydrophobins HFBI and HFBII at Silicon Oxynitride/Water and Air/Water Interfaces. Langmuir, 2013, 29, 2683-2691.	3.5	11
72	Cr 2 O 3 scale growth rates on metallic interconnectors derived from 40,000Âh solid oxide fuel cell stack operation. Journal of Power Sources, 2013, 243, 508-518.	7.8	38

#	Article	IF	CITATIONS
73	Solid-support immobilization of a "swing―fusion protein for enhanced glucose oxidase catalytic activity. Colloids and Surfaces B: Biointerfaces, 2013, 112, 186-191.	5.0	27
74	Hydrophobin: fluorosurfactant-like properties without fluorine. Soft Matter, 2013, 9, 6505.	2.7	24
75	Directing enzymatic cross-linking activity to the air–water interface by a fusion protein approach. Soft Matter, 2013, 9, 1612-1619.	2.7	13
76	Structure-Function Relationships in Hydrophobins: Probing the Role of Charged Side Chains. Applied and Environmental Microbiology, 2013, 79, 5533-5538.	3.1	19
77	Modification of interfacial forces by hydrophobin HFBI. Soft Matter, 2013, 9, 10627.	2.7	13
78	The role of hemicellulose in nanofibrillated cellulose networks. Soft Matter, 2013, 9, 1319-1326.	2.7	103
79	Selection and characterization of peptides binding to diamond-like carbon. Colloids and Surfaces B: Biointerfaces, 2013, 110, 66-73.	5.0	6
80	Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. European Journal of Pharmaceutical Sciences, 2013, 50, 69-77.	4.0	209
81	Bioseparation of Recombinant Proteins from Plant Extract with Hydrophobin Fusion Technology. Methods in Molecular Biology, 2012, 824, 527-534.	0.9	15
82	Intravenous Delivery of Hydrophobin-Functionalized Porous Silicon Nanoparticles: Stability, Plasma Protein Adsorption and Biodistribution. Molecular Pharmaceutics, 2012, 9, 654-663.	4.6	146
83	Exploring the mineralization of hydrophobins at a liquid interface. Soft Matter, 2012, 8, 11343.	2.7	12
84	Adhesion and tribological properties of hydrophobin proteins in aqueous lubrication on stainless steel surfaces. RSC Advances, 2012, 2, 9867.	3.6	28
85	Self-assembly of Class II Hydrophobins on Polar Surfaces. Langmuir, 2012, 28, 4293-4300.	3.5	24
86	Facile Method for Stiff, Tough, and Strong Nanocomposites by Direct Exfoliation of Multilayered Graphene into Native Nanocellulose Matrix. Biomacromolecules, 2012, 13, 1093-1099.	5.4	126
87	Immobilization–Stabilization of Proteins on Nanofibrillated Cellulose Derivatives and Their Bioactive Film Formation. Biomacromolecules, 2012, 13, 594-603.	5.4	108
88	Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012, 4, 3184.	5.6	63
89	Identification and characterization of gushingâ€active hydrophobins from <i>Fusarium graminearum</i> and related species. Journal of Basic Microbiology, 2012, 52, 184-194.	3.3	42
90	The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials, 2012, 33, 3353-3362.	11.4	125

#	Article	IF	CITATIONS
91	Genetic engineering in biomimetic composites. Trends in Biotechnology, 2012, 30, 191-197.	9.3	26
92	Quantitative Assessment of the Enzymatic Degradation of Amorphous Cellulose by Using a Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir, 2011, 27, 8819-8828.	3.5	47
93	Self-assembly of cellulose nanofibrils by genetically engineered fusion proteins. Soft Matter, 2011, 7, 2402.	2.7	66
94	Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—Enhanced stability and release. Journal of Controlled Release, 2011, 156, 390-397.	9.9	128
95	Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials, 2011, 32, 9089-9099.	11.4	71
96	Ordered nano-structure of a stamped self-organized protein layer on a HOPG surface using a HFB carrier. Colloids and Surfaces B: Biointerfaces, 2011, 84, 395-399.	5.0	4
97	Functionalization of Nanofibrillated Cellulose with Silver Nanoclusters: Fluorescence and Antibacterial Activity. Macromolecular Bioscience, 2011, 11, 1185-1191.	4.1	121
98	Genetic Engineering of Biomimetic Nanocomposites: Diblock Proteins, Graphene, and Nanofibrillated Cellulose. Angewandte Chemie - International Edition, 2011, 50, 8688-8691.	13.8	142
99	Biomimetic approach to water lubrication with biomolecular additives. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2011, 225, 1013-1022.	1.8	11
100	Interfacial Engineering by Proteins: Exfoliation and Functionalization of Graphene by Hydrophobins. Angewandte Chemie - International Edition, 2010, 49, 4946-4949.	13.8	158
101	Hydrophilic modification of polystyrene with hydrophobin for time-resolved immunofluorometric assay. Biosensors and Bioelectronics, 2010, 26, 1074-1079.	10.1	45
102	Hydrophobin Fusions for High-Level Transient Protein Expression and Purification in <i>Nicotiana benthamiana</i> Â Â Â. Plant Physiology, 2010, 152, 622-633.	4.8	155
103	Mechanisms of Protein Adhesion on Surface Films of Hydrophobin. Langmuir, 2010, 26, 8491-8496.	3.5	77
104	Multifunctional Hydrophobin: Toward Functional Coatings for Drug Nanoparticles. ACS Nano, 2010, 4, 1750-1758.	14.6	121
105	Electrical transport through ordered self-assembled protein monolayer measured by constant force conductive atomic force microscopy. Applied Physics Letters, 2009, 94, 183901.	3.3	10
106	Labeled <i>Trichoderma reesei</i> Cellulase as a Marker for <i>Acanthamoeba</i> Cyst Wall Cellulose in Infected Tissues. Applied and Environmental Microbiology, 2009, 75, 6827-6830.	3.1	7
107	Hydrophobins: Proteins that self assemble at interfaces. Current Opinion in Colloid and Interface Science, 2009, 14, 356-363.	7.4	320
108	Effect of transglutaminase-induced cross-linking of sodium caseinate on the properties of equilibrated interfaces and foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 344, 79-85.	4.7	33

MARKUS B LINDER

#	Article	IF	CITATIONS
109	Self-Assembled Films of Hydrophobin Proteins HFBI and HFBII Studied in Situ at the Air/Water Interface. Langmuir, 2009, 25, 1612-1619.	3.5	71
110	The Amphiphilic Protein HFBII as a Genetically Taggable Molecular Carrier for the Formation of a Self-Organized Functional Protein Layer on a Solid Surface. Langmuir, 2009, 25, 8841-8844.	3.5	25
111	Selective Nanopatterning Using Citrate-Stabilized Au Nanoparticles and Cystein-Modified Amphiphilic Protein. Langmuir, 2009, 25, 5185-5192.	3.5	34
112	Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei. Protein Science, 2009, 11, 2257-2266.	7.6	102
113	Interactions of Hydrophobin Proteins in Solution Studied by Small-Angle X-Ray Scattering. Biophysical Journal, 2008, 94, 198-206.	0.5	47
114	Hydrophobin (HFBI): A potential fusion partner for one-step purification of recombinant proteins from insect cells. Protein Expression and Purification, 2008, 59, 18-24.	1.3	34
115	Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers. Microbiology (United Kingdom), 2008, 154, 1677-1685.	1.8	48
116	Crystal Structures of Hydrophobin HFBII in the Presence of Detergent Implicate the Formation of Fibrils and Monolayer Films. Journal of Biological Chemistry, 2007, 282, 28733-28739.	3.4	50
117	Precisely Defined Protein–Polymer Conjugates: Construction of Synthetic DNA Binding Domains on Proteins by Using Multivalent Dendrons. ACS Nano, 2007, 1, 103-113.	14.6	77
118	The relation between solution association and surface activity of the hydrophobin HFBI fromTrichoderma reesei. FEBS Letters, 2007, 581, 2721-2726.	2.8	28
119	Self-Assembled Hydrophobin Protein Films at the Airâ	2.5	153
120	Hollow nanoparticle nanotubes with a nanoscale brick wall structure of clay mineral platelets. Chemical Communications, 2007, , 1366.	4.1	17
121	Controlled Hybrid Nanostructures through Proteinâ€Mediated Noncovalent Functionalization of Carbon Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 6446-6449.	13.8	67
122	Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme and Microbial Technology, 2007, 41, 234-243.	3.2	41
123	Self-assembled films of hydrophobin protein HFBIII from Trichoderma reesei. Journal of Applied Crystallography, 2007, 40, s355-s360.	4.5	16
124	Cleavage of recombinant proteins at poly-His sequences by Co(II) and Cu(II). Protein Science, 2007, 16, 1751-1761.	7.6	16
125	Interaction and Comparison of a Class I Hydrophobin fromSchizophyllum communeand Class II Hydrophobins fromTrichoderma reesei. Biomacromolecules, 2006, 7, 1295-1301.	5.4	125
126	Behavior ofTrichoderma reeseiHydrophobins in Solution:Â Interactions, Dynamics, and Multimer Formationâ€. Biochemistry, 2006, 45, 8590-8598.	2.5	76

#	Article	IF	CITATIONS
127	Hydrophobin HFBII in detail: ultrahigh-resolution structure at 0.75â€Ã Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 356-367.	2.5	71
128	Two crystal structures of Trichoderma reesei hydrophobin HFBIThe structure of a protein amphiphile with and without detergent interaction. Protein Science, 2006, 15, 2129-2140.	7.6	158
129	Cyclic nucleotide specific phosphodiesterases of Leishmania major. BMC Microbiology, 2006, 6, 25.	3.3	39
130	Multivalent Dendrons for High-Affinity Adhesion of Proteins to DNA. Angewandte Chemie - International Edition, 2006, 45, 3538-3542.	13.8	65
131	Langmuir–Blodgett films of hydrophobins HFBI and HFBII. Surface Science, 2005, 584, 35-40.	1.9	18
132	Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiology Reviews, 2005, 29, 877-896.	8.6	535
133	Fungal Hydrophobins as Predictors of the Gushing Activity of Malt. Journal of the Institute of Brewing, 2005, 111, 105-111.	2.3	92
134	Crystallization and preliminary X-ray characterization ofTrichoderma reeseihydrophobin HFBII. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 163-165.	2.5	16
135	Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains. Colloids and Surfaces B: Biointerfaces, 2004, 35, 125-135.	5.0	44
136	Atomic Resolution Structure of the HFBII Hydrophobin, a Self-assembling Amphiphile. Journal of Biological Chemistry, 2004, 279, 534-539.	3.4	205
137	Laccase fromMelanocarpus albomycesbinds effectively to cellulose. FEBS Letters, 2004, 576, 251-255.	2.8	23
138	Efficient Purification of Recombinant Proteins Using Hydrophobins as Tags in Surfactant-Based Two-Phase Systemsâ€. Biochemistry, 2004, 43, 11873-11882.	2.5	117
139	A Novel Laccase from the Ascomycete Melanocarpus albomyces. ACS Symposium Series, 2003, , 315-331.	0.5	1
140	Self-assembled structures of hydrophobins HFBI and HFBII. Journal of Applied Crystallography, 2003, 36, 499-502.	4.5	23
141	Structural Hierarchy in Molecular Films of Two Class II Hydrophobinsâ€. Biochemistry, 2003, 42, 5253-5258.	2.5	120
142	The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 484-489.	7.1	323
143	Expression of a Fungal Hydrophobin in the Saccharomyces cerevisiae Cell Wall: Effect on Cell Surface Properties and Immobilization. Applied and Environmental Microbiology, 2002, 68, 3385-3391.	3.1	32
144	Use of Recombinant Cellulose-Binding Domains of Trichoderma reesei Cellulase as a Selective Immunocytochemical Marker for Cellulose in Protozoa. Applied and Environmental Microbiology, 2002, 68, 2503-2508.	3.1	32

#	Article	IF	CITATIONS
145	Aggregation and Self-Assembly of Hydrophobins from Trichoderma reesei: Low-Resolution Structural Models. Biophysical Journal, 2002, 83, 2240-2247.	0.5	95
146	A novel two-step extraction method with detergent/polymer systems for primary recovery of the fusion protein endoglucanase l–hydrophobin I. Biochimica Et Biophysica Acta - General Subjects, 2002, 1569, 139-150.	2.4	43
147	Cellulases in Food Processing. , 2002, , .		1
148	The Hydrophobins HFBI and HFBII fromTrichoderma reeseiShowing Efficient Interactions with Nonionic Surfactants in Aqueous Two-Phase Systems. Biomacromolecules, 2001, 2, 511-517.	5.4	129
149	Efficient enantioselective separation of drug enantiomers by immobilised antibody fragments. Journal of Chromatography A, 2001, 925, 89-97.	3.7	53
150	Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei. FEBS Journal, 1999, 262, 637-643.	0.2	73
151	Design of a pH-dependent cellulose-binding domain. FEBS Letters, 1999, 447, 13-16.	2.8	33
152	Dynamic Interaction of <i>Trichoderma reesei</i> Cellobiohydrolases Cel6A and Cel7A and Cellulose at Equilibrium and during Hydrolysis. Applied and Environmental Microbiology, 1999, 65, 5229-5233.	3.1	101
153	Solution structure of the cellulose-binding domain of endoglucanase I from Trichoderma reesei and its interaction with cello-oligosaccharides. FEBS Journal, 1998, 256, 279-286.	0.2	58
154	Improved immobilization of fusion proteins via cellulose-binding domains. , 1998, 60, 642-647.		37
155	The roles and function of cellulose-binding domains. Journal of Biotechnology, 1997, 57, 15-28.	3.8	321
156	Trichoderma reesei cellobiohydrolase I with an endoglucanase cellulose-binding domain: action on bacterial microcrystalline cellulose. Journal of Biotechnology, 1997, 57, 49-57.	3.8	66
157	Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases. FEBS Letters, 1997, 407, 291-296.	2.8	50
158	Threeâ€dimensional structures of three engineered celluloseâ€binding domains of cellobiohydrolase I from <i>Trichoderma reesei</i> . Protein Science, 1997, 6, 294-303.	7.6	81
159	Characterization of a Double Cellulose-binding Domain. Journal of Biological Chemistry, 1996, 271, 21268-21272.	3.4	117
160	Identification of functionally important amino acids in the celluloseâ€binding domain of <i>Trichoderma reesei</i> cellobiohydrolase I. Protein Science, 1995, 4, 1056-1064.	7.6	195
161	The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution. FEBS Letters, 1995, 372, 96-98.	2.8	104