William A Dimichele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATION
1	A taxonomic revision of the late Paleozoic lyginopterid Sphenopteridium germanicum and description of its globose-stem growth habit. Review of Palaeobotany and Palynology, 2022, 298, 104591.	1.5	3
2	The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian. Earth-Science Reviews, 2022, 226, 103922.	9.1	21
3	<i>Stigmaria</i> : A Review of the Anatomy, Development, and Functional Morphology of the Rootstock of the Arboreous Lycopsids. International Journal of Plant Sciences, 2022, 183, 493-534.	1.3	7
4	Modeled physiological mechanisms for observed changes in the late Paleozoic plant fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110056.	2.3	13
5	Dominance-diversity architecture of a mixed hygromorphic-to-xeromorphic flora from a botanically		

WILLIAM A DIMICHELE

#	Article	IF	CITATIONS
19	The Non-analog Vegetation of the Late Paleozoic Icehouse–Hothouse and Their Coal-Forming Forested Environments. Springer Textbooks in Earth Sciences, Geography and Environment, 2020, , 291-316.	0.3	5
20	Paleoecological and paleoenvironmental interpretation of three successive macrofloras and palynofloras from the Kola Switch locality, lower Permian (Archer City Formation, Bowie Group) of Clay County, Texas, USA. Palaontologische Zeitschrift, 2019, 93, 423-451.	1.6	8
21	Tiny Rhizomorphic Rooting Systems from the Early Permian Abo Formation of New Mexico, USA. International Journal of Plant Sciences, 2019, 180, 504-512.	1.3	6
22	Paleoecological and paleoenvironmental interpretation of three successive macrofloras and palynofloras from the Kola Switch locality, lower Permian (Archer City Formation, Bowie Group) of Clay County, Texas, USA. Palaontologische Zeitschrift, 2019, 93, 423-451.	1.6	0
23	Fast or slow for the arborescent lycopsids?. New Phytologist, 2018, 218, 891-893.	7.3	7
24	New insights on the stepwise collapse of the Carboniferous Coal Forests: Evidence from cyclothems and coniferopsid tree-stumps near the Desmoinesian–Missourian boundary in Peoria County, Illinois, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490, 375-392.	2.3	26
25	A hidden cradle of plant evolution in Permian tropical lowlands. Science, 2018, 362, 1414-1416.	12.6	61
26	Lower Permian Flora of the Sanzenbacher Ranch, Clay County, Texas. , 2018, , 95-126.		4
27	Vegetational zonation in a swamp forest, Middle Pennsylvanian, Illinois Basin, U.S.A., indicates niche differentiation in a wetland plant community. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 487, 71-92.	2.3	15
28	Reevaluation and taxonomic clarification of <i>Gigantopteridium</i> and <i>Cathaysiopteris</i> of western equatorial Pangea and their biogeographical significance. Journal of Paleontology, 2017, 91, 859-870.	0.8	5
29	Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. New Phytologist, 2017, 215, 1333-1353.	7.3	64
30	Presentation of the 2015 Harrell L. Strimple Award of the Paleontological Society to Jack Wittry. Journal of Paleontology, 2017, 91, 1344-1344.	0.8	0
31	Floras characteristic of Late Pennsylvanian peat swamps arose in the late Middle Pennsylvanian. Stratigraphy, 2017, 14, 123-141.	0.3	8
32	Impact of an icehouse climate interval on tropical vegetation and plant evolution. Stratigraphy, 2017, 14, 365-376.	0.3	11
33	Plant Fossils from the Pennsylvanian–Permian Transition in Western Pangea, Abo Pass, New Mexico. Smithsonian Contributions To Paleobiology, 2017, , 2-40.	1.0	0
34	An early Permian coastal flora dominated by Germaropteris martinsii from basinal sediments in the Midland Basin, West Texas. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459, 409-422.	2.3	13
35	Dryland vegetation from the Middle Pennsylvanian of Indiana (Illinois Basin): the dryland biome in glacioeustatic, paleobiogeographic, and paleoecologic context. Journal of Paleontology, 2016, 90, 785-814.	0.8	29
36	AN ABANDONED-CHANNEL FILL WITH EXQUISITELY PRESERVED PLANTS IN REDBEDS OF THE CLEAR FORK FORMATION, TEXAS, USA: AN EARLY PERMIAN WATER-DEPENDENT HABITAT ON THE ARID PLAINS OF PANGEA. Journal of Sedimentary Research, 2016, 86, 944-964.	1.6	13

#	Article	IF	CITATIONS
37	A Middle Pennsylvanian macrofloral assemblage from wetland deposits in Indiana (Illinois Basin): a taxonomic contribution with biostratigraphic, paleobiogeographic, and paleoecologic implications. Journal of Paleontology, 2016, 90, 589-631.	0.8	22
38	Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles. Nature Geoscience, 2016, 9, 824-828.	12.9	189
39	Lyons et al. reply. Nature, 2016, 538, E3-E4.	27.8	1
40	Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2442-2447.	7.1	107
41	Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature, 2016, 529, 80-83.	27.8	147
42	Arborescent lycopsid productivity and lifespan: Constraining the possibilities. Review of Palaeobotany and Palynology, 2016, 227, 97-110.	1.5	42
43	Reconstructing Extinct Plant Water Use for Understanding Vegetation–Climate Feedbacks: Methods, Synthesis, and a Case Study Using the Paleozoic-Era Medullosan Seed Ferns. The Paleontological Society Papers, 2015, 21, 167-196.	0.6	23
44	Early Permian (Asselian) vegetation from a seasonally dry coast in western equatorial Pangea: Paleoecology and evolutionary significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 433, 158-173.	2.3	20
45	Plant architecture and spatial structure of an early Permian woodland buried by flood waters, Sangre de Cristo Formation, New Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 424, 91-110.	2.3	11
46	Tropical Biome Dynamics During the Pennsylvanian Ice Ages. The Paleontological Society Special Publications, 2014, 13, 129-130.	0.0	2
47	The Okmulgee, Oklahoma fossil flora, a Mazon Creek equivalent: Spatial conservatism in the composition of Middle Pennsylvanian wetland vegetation over 1100km. Review of Palaeobotany and Palynology, 2014, 200, 24-52.	1.5	18
48	Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. Proceedings of the Geologists Association, 2014, 125, 524-533.	1.1	91
49	Middle and Late Pennsylvanian cyclothems, American Midcontinent: Ice-age environmental changes and terrestrial biotic dynamics. Comptes Rendus - Geoscience, 2014, 346, 159-168.	1.2	59
50	Wetland-Dryland Vegetational Dynamics in the Pennsylvanian Ice Age Tropics. International Journal of Plant Sciences, 2014, 175, 123-164.	1.3	152
51	ï,§The late Paleozoic ecological–evolutionary laboratory, and land-plant fossil record perspective. The Sedimentary Record, 2014, 12, 4-10.	0.6	70
52	Late Paleozoic continental warming of a cold tropical basin and floristic change in western Pangea. International Journal of Coal Geology, 2013, 119, 177-186.	5.0	53
53	On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 2013, 118, 58-87.	5.0	258
54	Callipterid peltasperms of the Dunkard Group, Central Appalachian Basin. International Journal of Coal Geology, 2013, 119, 56-78.	5.0	25

#	Article	IF	CITATIONS
55	The "seeds―on <i>Padgettia readi</i> are insect galls: reassignment of the plant to <i>Odontopteris</i> , the gall to <i>Ovofoligallites</i> n. gen., and the evolutionary implications thereof. Journal of Paleontology, 2013, 87, 217-231.	0.8	19
56	Growth habit of the late Paleozoic rhizomorphic treeâ€lycopsid family Diaphorodendraceae: Phylogenetic, evolutionary, and paleoecological significance. American Journal of Botany, 2013, 100, 1604-1625.	1.7	31
57	Conservatism of Late Pennsylvanian vegetational patterns during short-term cyclic and long-term directional environmental change, western equatorial Pangea. Geological Society Special Publication, 2013, 376, 201-234.	1.3	20
58	Permian Coal Forest offers a glimpse of late Paleozoic ecology. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4717-4718.	7.1	4
59	Lithostratigraphy, Paleontology, Biostratigraphy, and Age of the Upper Paleozoic Abo Formation Near Jemez Springs, Northern New Mexico, USA. Annals of Carnegie Museum, 2012, 80, 323-350.	0.5	9
60	Eccentricity-paced late Paleozoic climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 331-332, 150-161.	2.3	87
61	Palaeoecology of Macroneuropteris scheuchzeri, and its implications for resolving the paradox of â€~xeromorphic' plants in Pennsylvanian wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 331-332, 162-176.	2.3	36
62	Vertebrate trackways among a stand of <i>Supaia</i> White plants on an early Permian floodplain, New Mexico. Journal of Paleontology, 2012, 86, 584-594.	0.8	5
63	Calamitalean "pith casts―reconsidered. Review of Palaeobotany and Palynology, 2012, 173, 1-14.	1.5	21
64	A New Genus of Gigantopterid from the Middle Permian of the United States and China and Its Relevance to the Gigantopterid Concept. International Journal of Plant Sciences, 2011, 172, 107-119.	1.3	22
65	Pennsylvanian â€~fossil forests' in growth position (T ⁰ assemblages): origin, taphonomic bias and palaeoecological insights. Journal of the Geological Society, 2011, 168, 585-605.	2.1	103
66	Does extinction wield an axe or pruning shears? How interactions between phylogeny and ecology affect patterns of extinction. Paleobiology, 2011, 37, 72-91.	2.0	28
67	Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome. Geology, 2011, 39, 371-374.	4.4	51
68	NO MAJOR STRATIGRAPHIC GAP EXISTS NEAR THE MIDDLE-UPPER PENNSYLVANIAN (DESMOINESIAN-MISSOURIAN) BOUNDARY IN NORTH AMERICA. Palaios, 2011, 26, 125-139.	1.3	70
69	Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea. International Journal of Coal Geology, 2010, 83, 329-344.	5.0	128
70	WHAT HAPPENED TO THE COAL FORESTS DURING PENNSYLVANIAN GLACIAL PHASES?. Palaios, 2010, 25, 611-617.	1.3	102
71	Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands. Geology, 2009, 37, 923-926.	4.4	112
72	CATASTROPHICALLY BURIED MIDDLE PENNSYLVANIAN SIGILLARIA AND CALAMITEAN SPHENOPSIDS FROM INDIANA, USA: WHAT KIND OF VEGETATION WAS THIS?. Palaios, 2009, 24, 159-166.	1.3	31

#	Article	IF	CITATIONS
73	<i>Auritifolia</i> gen. nov., Probable Seed Plant Foliage with Comioid Affinities from the Early Permian of Texas, U.S.A International Journal of Plant Sciences, 2009, 170, 247-266.	1.3	28
74	Going underground: in search of Carboniferous coal forests. Geology Today, 2009, 25, 181-184.	0.9	3
75	Climate and vegetational regime shifts in the late Paleozoic ice age earth. Geobiology, 2009, 7, 200-226.	2.4	178
76	CRITICAL ISSUES OF SCALE IN PALEOECOLOGY. Palaios, 2009, 24, 1-4.	1.3	39
77	The so-called "Paleophytic–Mesophytic―transition in equatorial Pangea — Multiple biomes and vegetational tracking of climate change through geological time. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268, 152-163.	2.3	94
78	Plant Paleoecology in Deep Time ¹ . Annals of the Missouri Botanical Garden, 2008, 95, 144-198.	1.3	68
79	Pennsylvanian tropical floras from the United States as a record of changing climate. , 2008, , 305-316.		17
80	CO2-Forced Climate and Vegetation Instability During Late Paleozoic Deglaciation. Science, 2007, 315, 87-91.	12.6	464
81	Ecological gradients within a Pennsylvanian mire forest. Geology, 2007, 35, 415.	4.4	75
82	Paleoecology of the Late Pennsylvanian-age Calhoun coal bed and implications for long-term dynamics of wetland ecosystems. International Journal of Coal Geology, 2007, 69, 21-54.	5.0	36
83	A low diversity, seasonal tropical landscape dominated by conifers and peltasperms: Early Permian Abo Formation, New Mexico. Review of Palaeobotany and Palynology, 2007, 145, 249-273.	1.5	31
84	Evolution and importance of wetlands in earth history. , 2006, , .		65
85	Paleoecology of Late Paleozoic pteridosperms from tropical Euramerica1. Journal of the Torrey Botanical Society, 2006, 133, 83-118.	0.3	97
86	From wetlands to wet spots: Environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. , 2006, , .		48
87	Wetlands through Time. , 2006, , .		36
88	Epidermal anatomy of Glenopteris splendens Sellards nov. emend., an enigmatic seed plant from the Lower Permian of Kansas (U.S.A.). Review of Palaeobotany and Palynology, 2005, 136, 159-180.	1.5	25
89	AN UNUSUAL MIDDLE PERMIAN FLORA FROM THE BLAINE FORMATION (PEASE RIVER GROUP:) TJ ETQq1 1 0.78	84314 rgBT 0.8	/Overlock 10 61
90	Desmoinesian coal beds of the Eastern Interior and surrounding basins: The largest tropical peat mires in Earth history. , 2003, , .		12

#	Article	IF	CITATIONS
91	Genesis of phenotypic and genotypic diversity in land plants: The present as the key to the past. Systematics and Biodiversity, 2003, 1, 13-28.	1.2	5

$_{92}$ CRUSTACEAN-BEARING CONTINENTAL DEPOSITS IN THE PETROLIA FORMATION (LEONARDIAN SERIES, LOWER) Tj $_{0.8}^{0}$ Tg BT /Ove

93	Crustacean-bearing continental deposits in the Petrolia Formation (Leonardian Series, Lower Permian) of north-central Texas. Journal of Paleontology, 2002, 76, 486-494.	0.8	15
94	The ecology of Paleozoic ferns. Review of Palaeobotany and Palynology, 2002, 119, 143-159.	1.5	91
95	Place vs. time and vegetational persistence: a comparison of four tropical mires from the Illinois Basin during the height of the Pennsylvanian Ice Age. International Journal of Coal Geology, 2002, 50, 43-72.	5.0	63
96	Response of Late Carboniferous and Early Permian Plant Communities to Climate Change. Annual Review of Earth and Planetary Sciences, 2001, 29, 461-487.	11.0	190
97	An Early Permian flora with Late Permian and Mesozoic affinities from north-central Texas. Journal of Paleontology, 2001, 75, 449-460.	0.8	45
98	AN EARLY PERMIAN FLORA WITH LATE PERMIAN AND MESOZOIC AFFINITIES FROM NORTH-CENTRAL TEXAS. Journal of Paleontology, 2001, 75, 449-460.	0.8	73
99	Ecological Stability during the Late Paleozoic Cold Interval. The Paleontological Society Papers, 2000, 6, 63-78.	0.6	14
100	EARLY EVOLUTION OF LAND PLANTS: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation. Annual Review of Ecology, Evolution, and Systematics, 1998, 29, 263-292.	6.7	292
101	A Transect through a Clastic-Swamp to Peat-Swamp Ecotone in the Springfield Coal, Middle Pennsylvanian Age of Indiana, USA. Palaios, 1998, 13, 113.	1.3	18
101 102	A Transect through a Clastic-Swamp to Peat-Swamp Ecotone in the Springfield Coal, Middle Pennsylvanian Age of Indiana, USA. Palaios, 1998, 13, 113. Biomass Allocation in Late Pennsylvanian Coal-Swamp Plants. Palaios, 1997, 12, 127.	1.3 1.3	1 8 33
101 102 103	A Transect through a Clastic-Swamp to Peat-Swamp Ecotone in the Springfield Coal, Middle Pennsylvanian Age of Indiana, USA. Palaios, 1998, 13, 113. Biomass Allocation in Late Pennsylvanian Coal-Swamp Plants. Palaios, 1997, 12, 127. Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 125, 105-128.	1.3 1.3 2.3	18 33 73
101 102 103 104	A Transect through a Clastic-Swamp to Peat-Swamp Ecotone in the Springfield Coal, Middle Pennsylvanian Age of Indiana, USA. Palaios, 1998, 13, 113. Biomass Allocation in Late Pennsylvanian Coal-Swamp Plants. Palaios, 1997, 12, 127. Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 125, 105-128. Clades, ecological amplitudes, and ecomorphs: phylogenetic effects and persistence of primitive plant communities in the Pennsylvanian-age tropical wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127, 83-105.	1.3 1.3 2.3 2.3	18 33 73 66
101 102 103 104	A Transect through a Clastic-Swamp to Peat-Swamp Ecotone in the Springfield Coal, Middle Pennsylvanian Age of Indiana, USA. Palaios, 1998, 13, 113. Biomass Allocation in Late Pennsylvanian Coal-Swamp Plants. Palaios, 1997, 12, 127. Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 125, 105-128. Clades, ecological amplitudes, and ecomorphs: phylogenetic effects and persistence of primitive plant communities in the Pennsylvanian-age tropical wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127, 83-105. Plant paleoecology and evolutionary inference: two examples from the Paleozoic. Review of Palaeobotany and Palynology, 1996, 90, 223-247.	1.3 1.3 2.3 2.3 1.5	18 33 73 66 46
 101 102 103 104 105 106 	A Transect through a Clastic-Swamp to Peat-Swamp Ecotone in the Springfield Coal, Middle Pennsylvanian Age of Indiana, USA. Palaios, 1998, 13, 113. Biomass Allocation in Late Pennsylvanian Coal-Swamp Plants. Palaios, 1997, 12, 127. Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 125, 105-128. Clades, ecological amplitudes, and ecomorphs: phylogenetic effects and persistence of primitive plant communities in the Pennsylvanian-age tropical wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127, 83-105. Plant paleoecology and evolutionary inference: two examples from the Paleozoic. Review of Palaeobotany and Palynology, 1996, 90, 223-247. A drowned lycopsid forest above the Mahoning coal (Conemaugh Group, Upper Pennsylvanian) in eastern Ohio, U.S.A International Journal of Coal Geology, 1996, 31, 249-276.	1.3 1.3 2.3 2.3 1.5 5.0	18 33 73 66 46 41
101 102 103 104 105 106	A Transect through a Clastic-Swamp to Peat-Swamp Ecotone in the Springfield Coal, Middle Pennsylvanian Age of Indiana, USA. Palaios, 1998, 13, 113. Biomass Allocation in Late Pennsylvanian Coal-Swamp Plants. Palaios, 1997, 12, 127. Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 125, 105-128. Clades, ecological amplitudes, and ecomorphs: phylogenetic effects and persistence of primitive plant communities in the Pennsylvanian-age tropical wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127, 83-105. Plant paleoecology and evolutionary inference: two examples from the Paleozoic. Review of Palaeobtany and Palynology, 1996, 90, 223-247. A drowned lycopsid forest above the Mahoning coal (Conemaugh Group, Upper Pennsylvanian) in eastern Ohio, U.S.A. International Journal of Coal Geology, 1996, 31, 249-276. Climate change, plant extinctions and vegetational recovery during the Middle-Late Pennsylvanian Transition: the Case of tropical peat-forming environments in North America. Geological Society Special Publication, 1996, 102, 201-221.	1.3 1.3 2.3 2.3 1.5 5.0	18 33 73 66 46 41 57

#	Article	IF	CITATIONS
109	Paleoecology of the Springfield Coal Member (Desmoinesian, Illinois Basin) near the Leslie Cemetery paleochannel, southwestern Indiana. International Journal of Coal Geology, 1995, 27, 59-98.	5.0	26
110	Taphonomic and sedimentologic characterization of roof-shale floras. , 1995, , .		46
111	Conflict between Local and Global Changes in Plant Diversity through Geological Time. Palaios, 1995, 10, 551.	1.3	84
112	Ecological patterns in time and space. Paleobiology, 1994, 20, 89-92.	2.0	59
113	HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM. Biological Reviews, 1994, 69, 345-417.	10.4	178
114	Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 106, 39-90.	2.3	280
115	Presentation of the Charles Schuchert Award of The Paleontological Society to Peter R. Crane. Journal of Paleontology, 1994, 68, 918-918.	0.8	0
116	Validation of Synchysidendron , gen. nov. (Fossiles). Taxon, 1993, 42, 647-648.	0.7	4
117	Experimental Cladistic Analysis of Anatomically Preserved Arborescent Lycopsids from the Carboniferous of Euramerica: An Essay on Paleobotanical Phylogenetics. Annals of the Missouri Botanical Garden, 1992, 79, 500.	1.3	145
118	THE PENNSYLVANIAN-PERMIAN VEGETATIONAL TRANSITION: A TERRESTRIAL ANALOGUE TO THE ONSHORE-OFFSHORE HYPOTHESIS. Evolution; International Journal of Organic Evolution, 1992, 46, 807-824.	2.3	93
119	Comparative Ecology and Life-History Biology of Arborescent Lycopsids in Late Carboniferous Swamps of Euramerica. Annals of the Missouri Botanical Garden, 1992, 79, 560.	1.3	191
120	The Pennsylvanian-Permian Vegetational Transition: A Terrestrial Analogue to the Onshore-Offshore Hypothesis. Evolution; International Journal of Organic Evolution, 1992, 46, 807.	2.3	59
121	DIAPHORODENDRACEAE, FAM. NOV. (LYCOPSIDA: CARBONIFEROUS): SYSTEMATICS AND EVOLUTIONARY RELATIONSHIPS OF DIAPHORODENDRON AND SYNCHYSIDENDRON, GEN. NOV American Journal of Botany, 1992, 79, 605-617.	1.7	40
122	Diaphorodendraceae, fam. nov. (Lycopsida: Carboniferous): Systematics and Evolutionary Relationships of Diaphorodendron and Synchysidendron, gen. nov. American Journal of Botany, 1992, 79, 605.	1.7	36
123	Quantitative Analysis and Paleoecology of the Secor Coal and Roof-Shale Floras (Middle) Tj ETQq1 1 0.784314 rg	gBT_/Overlo	pcg_{3}^{10} Tf 5
124	Hizemodendron, gen. nov., a Pseudoherbaceous Segregate of Lepidodendron (Pennsylvanian): Phylogenetic Context for Evolutionary Changes in Lycopsid Growth Architecture. Systematic Botany, 1991, 16, 195.	0.5	41
125	ORIGINS OF HETEROSPORY AND THE SEED HABIT: THE ROLE OF HETEROCHRONY. Taxon, 1989, 38, 1-11.	0.7	55
126	Small-Scale Spatial Heterogeneity in Pennsylvanian-Age Vegetation from the Roof Shale of the Springfield Coal (Illinois Basin). Palaios, 1989, 4, 276.	1.3	33

WILLIAM A DIMICHELE

#	Article	IF	CITATIONS
127	Paleoecology of the Middle Pennsylvanian-age Herrin Coal Swamp (Illinois) near a contemporaneous river system, the Walshville paleochannel. Review of Palaeobotany and Palynology, 1988, 56, 151-176.	1.5	71
128	Opportunistic evolution: Abiotic environmental stress and the fossil record of plants. Review of Palaeobotany and Palynology, 1987, 50, 151-178.	1.5	77
129	Structure and Dynamics of a Pennsylvanian-Age Lepidodendron Forest: Colonizers of a Disturbed Swamp Habitat in the Herrin (No. 6) Coal of Illinois. Palaios, 1987, 2, 146.	1.3	60
130	Morphology and Paleoecology of Pennsylvanian-Age Coal-Swamp Plants. Notes for A Short Course Studies in Geology, 1986, 15, 97-114.	0.1	4
131	Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: Environmental inferences. International Journal of Coal Geology, 1985, 5, 43-109.	5.0	298
132	The Upward Outlook in Paleobotany - Paleobotany and the Evolution of Plants.Wilson N. Stewart Cambridge University Press, New York. 1983. 405 pp Plant Life in the Devonian.Patricia G. Gensel and Henry N. Andrews Praeger Publishers, New York. 1984. 380 pp Paleobiology, 1985, 11, 356-359.	2.0	3
133	Diaphorodendron, gen. nov., a Segregate from Lepidodendron (Pennsylvanian Age). Systematic Botany, 1985, 10, 453.	0.5	73
134	Arborescent lycopod reproduction and paleoecology in a coal-swamp environment of late Middle Pennsylvanian age (herrin coal, Illinois, U.S.A.). Review of Palaeobotany and Palynology, 1985, 44, 1-26.	1.5	178
135	STEM AND LEAF CUTICLE OF KARINOPTERIS: SOURCE OF CUTICLES FROM THE INDIANA "PAPER―COAL. American Journal of Botany, 1984, 71, 626-637.	1.7	30
136	Stem and Leaf Cuticle of Karinopteris: Source of Cuticles from the Indiana "Paper" Coal. American Journal of Botany, 1984, 71, 626.	1.7	26
137	Lepidodendron hickii and Generic Delimitation in Carboniferous Lepidodendrid Lycopods. Systematic Botany, 1983, 8, 317.	0.5	65
138	PARALYCOPODITES MOREY & MOREY, FROM THE CARBONIFEROUS OF EURAMERICA—A REASSESSMENT OF GENERIC AFFINITIES AND EVOLUTION OF "LEPIDODENDRON―BREVIFOLIUM WILLIAMSON. American Journal of Botany, 1980, 67, 1466-1476.	1.7	46
139	Paralycopodites Morey & Morey, from the Carboniferous of Euramerica – A Reassessment of Generic Affinities and Evolution of "Lepidodendron" brevifolium Williamson. American Journal of Botany, 1980, 67, 1466.	1.7	28
140	Lycopods of Pennsylvanian age coals: <i>Polysporia</i> . Canadian Journal of Botany, 1979, 57, 1740-1753.	1.1	38
141	Stelastellara baxter, axes of questionable gymnosperm affinity with unusual habit — Middle Pennsylvanian. Review of Palaeobotany and Palynology, 1979, 27, 103-117.	1.5	3
142	Monocyclic Psaronius from the lower Pennsylvanian of the Illinois Basin. Canadian Journal of Botany, 1977, 55, 2514-2524.	1.1	37