Ville Mustonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874668/publications.pdf

Version: 2024-02-01

62 papers 10,532 citations

30 h-index 56 g-index

81 all docs

81 docs citations

times ranked

81

18209 citing authors

#	Article	IF	CITATIONS
1	The repertoire of mutational signatures in human cancer. Nature, 2020, 578, 94-101.	27.8	2,104
2	Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature, 2016, 534, 47-54.	27.8	1,760
3	Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature, 2011, 469, 539-542.	27.8	1,127
4	Somatic <i>SF3B1</i> Mutation in Myelodysplasia with Ring Sideroblasts. New England Journal of Medicine, 2011, 365, 1384-1395.	27.0	1,094
5	The evolutionary history of 2,658 cancers. Nature, 2020, 578, 122-128.	27.8	690
6	A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes. Molecular Biology and Evolution, 2014, 31, 872-888.	8.9	328
7	Pathway and network analysis of cancer genomes. Nature Methods, 2015, 12, 615-621.	19.0	297
8	Predicting evolution. Nature Ecology and Evolution, 2017, 1, 77.	7.8	272
9	Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell, 2021, 184, 2239-2254.e39.	28.9	260
10	From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends in Genetics, 2009, 25, 111-119.	6.7	202
11	High-Definition Reconstruction of Clonal Composition in Cancer. Cell Reports, 2014, 7, 1740-1752.	6.4	165
12	High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population. Genetics, 2013, 195, 1141-1155.	2.9	164
13	Computational approaches to identify functional genetic variants in cancer genomes. Nature Methods, 2013, 10, 723-729.	19.0	161
14	Fitness flux and ubiquity of adaptive evolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4248-4253.	7.1	151
15	Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Computational Biology, 2018, 14, e1006258.	3. 2	127
16	Emergent Neutrality in Adaptive Asexual Evolution. Genetics, 2011, 189, 1361-1375.	2.9	109
17	Energy-dependent fitness: A quantitative model for the evolution of yeast transcription factor binding sites. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12376-12381.	7.1	107
18	Evolutionary population genetics of promoters: Predicting binding sites and functional phylogenies. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15936-15941.	7.1	106

#	Article	IF	Citations
19	EMu: probabilistic inference of mutational processes and their localization in the cancer genome. Genome Biology, 2013, 14, R39.	9.6	100
20	The evolutionary landscape of colorectal tumorigenesis. Nature Ecology and Evolution, 2018, 2, 1661-1672.	7.8	99
21	Clonal Heterogeneity Influences the Fate of New Adaptive Mutations. Cell Reports, 2017, 21, 732-744.	6.4	70
22	Adaptations to fluctuating selection in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2277-2282.	7.1	68
23	Molecular Evolution under Fitness Fluctuations. Physical Review Letters, 2008, 100, 108101.	7.8	65
24	Quantifying Selection Acting on a Complex Trait Using Allele Frequency Time Series Data. Molecular Biology and Evolution, 2012, 29, 1187-1197.	8.9	64
25	Neutral tumor evolution?. Nature Genetics, 2018, 50, 1630-1633.	21.4	59
26	The value of monitoring to control evolving populations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1007-1012.	7.1	50
27	Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies. Blood, 2016, 128, e1-e9.	1.4	49
28	Distinguishing Driver and Passenger Mutations in an Evolutionary History Categorized by Interference. Genetics, 2011, 189, 989-1000.	2.9	48
29	Shared Molecular Targets Confer Resistance over Short and Long Evolutionary Timescales. Molecular Biology and Evolution, 2019, 36, 691-708.	8.9	43
30	Identifying Selection in the Within-Host Evolution of Influenza Using Viral Sequence Data. PLoS Computational Biology, 2014, 10, e1003755.	3.2	39
31	Adenoma development in familial adenomatous polyposis and <i><scp>MUTYH</scp></i> àêessociated polyposis: somatic landscape and driver genes. Journal of Pathology, 2016, 238, 98-108.	4.5	39
32	Components of Selection in the Evolution of the Influenza Virus: Linkage Effects Beat Inherent Selection. PLoS Pathogens, 2012, 8, e1003091.	4.7	36
33	Inferring Genome-Wide Recombination Landscapes from Advanced Intercross Lines: Application to Yeast Crosses. PLoS ONE, 2013, 8, e62266.	2.5	29
34	Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression. PLoS Computational Biology, 2019, 15, e1007493.	3.2	26
35	Rapid identification of genes controlling virulence and immunity in malaria parasites. PLoS Pathogens, 2017, 13, e1006447.	4.7	23
36	Numerical estimation of the asymptotic behaviour of solid partitions of an integer. Journal of Physics A, 2003, 36, 6651-6659.	1.6	22

#	Article	IF	CITATIONS
37	Repeatable ecological dynamics govern the response of experimental communities to antibiotic pulse perturbation. Nature Ecology and Evolution, 2020, 4, 1385-1394.	7.8	22
38	A method to infer positive selection from marker dynamics in an asexual population. Bioinformatics, 2012, 28, 831-837.	4.1	21
39	Genomic Epidemiology and Evolution of <i>Escherichia coli</i> in Wild Animals in Mexico. MSphere, 2021, 6, .	2.9	19
40	Triangular lattice solution for filling in a wedge. Europhysics Letters, 2003, 63, 408-414.	2.0	18
41	Eco-evolutionary control of pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19694-19704.	7.1	16
42	Germline Fitness-Based Scoring of Cancer Mutations. Genetics, 2011, 188, 383-393.	2.9	15
43	Drug-induced resistance evolution necessitates less aggressive treatment. PLoS Computational Biology, 2021, 17, e1009418.	3.2	14
44	Multiobjective optimization identifies cancer-selective combination therapies. PLoS Computational Biology, 2020, 16, e1008538.	3.2	9
45	Wetting Effects at a Grain Boundary. Physical Review Letters, 2004, 93, 076101.	7.8	8
46	Uncovering Natural Longevity Alleles from Intercrossed Pools of Aging Fission Yeast Cells. Genetics, 2018, 210, 733-744.	2.9	8
47	Quantifying selection in evolving populations using time-resolved genetic data. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P01004.	2.3	7
48	GraphAlignment: Bayesian pairwise alignment of biological networks. BMC Systems Biology, 2012, 6, 144.	3.0	6
49	Machine Learning Prediction of Resistance to Subinhibitory Antimicrobial Concentrations from Escherichia coli Genomes. MSystems, 2021, 6, e0034621.	3.8	6
50	Evaluating genetic drift in time-series evolutionary analysis. Journal of Theoretical Biology, 2018, 437, 51-57.	1.7	5
51	MOLECULAR DYNAMIC STUDY OF A SINGLE DISLOCATION IN A TWO-DIMENSIONAL LENNARD–JONES SYSTEM. International Journal of Modern Physics C, 2003, 14, 407-421.	1.7	4
52	Solid on solid model for an interface crossing a grain boundary. Journal of Physics A, 2004, 37, L233-L239.	1.6	4
53	Relaxation dynamics of a system with a grain boundary. Physical Review E, 2004, 70, 066138.	2.1	4
54	Strong selective environments determine evolutionary outcome in time-dependent fitness seascapes. Evolution Letters, 2022, 6, 266-279.	3.3	4

#	Article	IF	CITATIONS
55	Equilibrium statistical mechanics of a grain boundary. Physical Review E, 2005, 71, 036106.	2.1	2
56	Exact Results for Wetting and Filling on a Triangular Lattice. International Journal of Thermophysics, 2004, 25, 1051-1062.	2.1	0
57	Multiobjective optimization identifies cancer-selective combination therapies., 2020, 16, e1008538.		O
58	Multiobjective optimization identifies cancer-selective combination therapies., 2020, 16, e1008538.		0
59	Multiobjective optimization identifies cancer-selective combination therapies., 2020, 16, e1008538.		O
60	Multiobjective optimization identifies cancer-selective combination therapies., 2020, 16, e1008538.		0
61	Multiobjective optimization identifies cancer-selective combination therapies., 2020, 16, e1008538.		0
62	Multiobjective optimization identifies cancer-selective combination therapies., 2020, 16, e1008538.		0