Martin Grininger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5874128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein denaturation at the air-water interface and how to prevent it. ELife, 2019, 8, .	6.0	196
2	Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nature Communications, 2017, 8, 14650.	12.8	117
3	Inhibition of the fungal fatty acid synthase type I multienzyme complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12803-12808.	7.1	111
4	Engineering strategies for rational polyketide synthase design. Natural Product Reports, 2018, 35, 1070-1081.	10.3	103
5	Expanding the product portfolio of fungal type I fatty acid synthases. Nature Chemical Biology, 2017, 13, 360-362.	8.0	97
6	Fatty Acid Biosynthesis: Chain‣ength Regulation and Control. ChemBioChem, 2019, 20, 2298-2321.	2.6	79
7	Parameters affecting the X-ray dose absorbed by macromolecular crystals. Journal of Synchrotron Radiation, 2005, 12, 268-275.	2.4	70
8	Engineering fatty acid synthases for directed polyketide production. Nature Chemical Biology, 2017, 13, 363-365.	8.0	63
9	Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9164-9169.	7.1	62
10	Dodecin Is the Key Player in Flavin Homeostasis of Archaea. Journal of Biological Chemistry, 2009, 284, 13068-13076.	3.4	59
11	Dodecins: A Family of Lumichrome Binding Proteins. Journal of Molecular Biology, 2006, 357, 842-857.	4.2	50
12	Perspectives on the evolution, assembly and conformational dynamics of fatty acid synthase type I (FAS I) systems. Current Opinion in Structural Biology, 2014, 25, 49-56.	5.7	50
13	Multimeric Options for the Auto-Activation of the Saccharomyces cerevisiae FAS Type I Megasynthase. Structure, 2009, 17, 1063-1074.	3.3	44
14	Structure and Conformational Variability of the Mycobacterium tuberculosis Fatty Acid Synthase Multienzyme Complex. Structure, 2013, 21, 1251-1257.	3.3	39
15	Characterization of the Polyspecific Transferase of Murine Type I Fatty Acid Synthase (FAS) and Implications for Polyketide Synthase (PKS) Engineering. ACS Chemical Biology, 2018, 13, 723-732.	3.4	39
16	Mechanism of Substrate Shuttling by the Acyl-Carrier Protein within the Fatty Acid Mega-Synthase. Journal of the American Chemical Society, 2010, 132, 12357-12364.	13.7	38
17	Engineering of Chimeric Polyketide Synthases Using SYNZIP Docking Domains. ACS Chemical Biology, 2019, 14, 426-433.	3.4	31
18	An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2018, 11, 150.	6.2	29

MARTIN GRININGER

#	Article	IF	CITATIONS
19	Cryoâ€EM structure of fatty acid synthase (FAS) from <i>Rhodosporidium toruloides</i> provides insights into the evolutionary development of fungal FAS. Protein Science, 2015, 24, 987-995.	7.6	28
20	Type I fatty acid synthase trapped in the octanoylâ€bound state. Protein Science, 2020, 29, 589-605.	7.6	28
21	Ketosynthase Domain Constrains the Design of Polyketide Synthases. ACS Chemical Biology, 2020, 15, 2422-2432.	3.4	28
22	Multi-Ligand-Binding Flavoprotein Dodecin as a Key Element for Reversible Surface Modification in Nano-biotechnology. ACS Nano, 2015, 9, 3491-3500.	14.6	26
23	Ultrafast Excited-state Deactivation of Flavins Bound to Dodecin. Journal of Biological Chemistry, 2012, 287, 17637-17644.	3.4	24
24	Dodecin Sequesters FAD in Closed Conformation from the Aqueous Solution. Journal of Molecular Biology, 2006, 364, 561-566.	4.2	23
25	Electrochemical switching of the flavoprotein dodecin at gold surfaces modified by flavin-DNA hybrid linkers. Biointerphases, 2008, 3, 51-58.	1.6	22
26	Structural and Biochemical Characterization of a Halophilic Archaeal Alkaline Phosphatase. Journal of Molecular Biology, 2010, 400, 52-62.	4.2	22
27	Analysis and engineering of substrate shuttling by the acyl carrier protein (ACP) in fatty acid synthases (FASs). Chemical Communications, 2018, 54, 11606-11609.	4.1	19
28	Analysis of the co-translational assembly of the fungal fatty acid synthase (FAS). Scientific Reports, 2020, 10, 895.	3.3	18
29	Blueâ€Lightâ€Triggered Photorelease of Active Chemicals Captured by the Flavoprotein Dodecin. ChemBioChem, 2009, 10, 834-837.	2.6	16
30	Probing the modularity of megasynthases by rational engineering of a fatty acid synthase Type I. Protein Science, 2019, 28, 414-428.	7.6	16
31	The resolution revolution in cryoEM requires high-quality sample preparation: a rapid pipeline to a high-resolution map of yeast fatty acid synthase. IUCrJ, 2020, 7, 220-227.	2.2	16
32	Modular Polyketide Synthases (PKSs): A New Model Fits All?. ChemBioChem, 2014, 15, 2489-2493.	2.6	15
33	Smart Molecular Nanosheets for Advanced Preparation of Biological Samples in Electron Cryo-Microscopy. ACS Nano, 2020, 14, 9972-9978.	14.6	14
34	Solution Structure and Conformational Flexibility of a Polyketide Synthase Module. Jacs Au, 2021, 1, 2162-2171.	7.9	14
35	The Flavoprotein Dodecin as a Redox Probe for Electron Transfer through DNA. Angewandte Chemie - International Edition, 2013, 52, 4950-4953.	13.8	12
36	Strategies in megasynthase engineering – fatty acid synthases (FAS) as model proteins. Beilstein Journal of Organic Chemistry, 2017, 13, 1204-1211.	2.2	12

MARTIN GRININGER

#	Article	IF	CITATIONS
37	Flavin Storage and Sequestration by <i>Mycobacterium tuberculosis</i> Dodecin. ACS Infectious Diseases, 2018, 4, 1082-1092.	3.8	12
38	Cell-Free Synthesis of Natural Compounds from Genomic DNA of Biosynthetic Gene Clusters. ACS Synthetic Biology, 2020, 9, 2418-2426.	3.8	11
39	Transacylation Kinetics in Fatty Acid and Polyketide Synthases and its Sensitivity to Point Mutations**. ChemCatChem, 2021, 13, 2771-2782.	3.7	10
40	Structure of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 576-585.	0.8	10
41	The role of the iterative modules in polyketide synthase evolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8680-8682.	7.1	9
42	Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1401-1407.	0.8	8
43	Site-Specific Labelling of Multidomain Proteins by Amber Codon Suppression. Scientific Reports, 2018, 8, 14864.	3.3	8
44	Fusing α and β subunits of the fungal fatty acid synthase leads to improved production of fatty acids. Scientific Reports, 2020, 10, 9780.	3.3	7
45	Directed Manipulation of a Flavoprotein Photocycle. Angewandte Chemie - International Edition, 2013, 52, 8463-8466.	13.8	6
46	Characterization of the small flavin-binding dodecin in the roseoflavin producer Streptomyces davawensis. Microbiology (United Kingdom), 2018, 164, 908-919.	1.8	6
47	Expression, crystallization and crystallographic analysis of DegS, a stress sensor of the bacterial periplasm. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1429-1431.	2.5	5
48	Complex transitions between dihydrate and anhydrate forms of ectoine – unexpected behavior of a highly hygroscopic compatible solute in the solid state. CrystEngComm, 2020, 22, 169-172.	2.6	5
49	Substrate promiscuity of polyketide synthase enables production of tsetse fly attractants 3-ethylphenol and 3-propylphenol by engineering precursor supply in yeast. Scientific Reports, 2020, 10, 9962.	3.3	4
50	Comparative biochemical and structural analysis of the flavin-binding dodecins from Streptomyces davaonensis and Streptomyces coelicolor reveals striking differences with regard to multimerization. Microbiology (United Kingdom), 2019, 165, 1095-1106.	1.8	4
51	Dodecin as carrier protein for immunizations and bioengineering applications. Scientific Reports, 2020, 10, 13297.	3.3	3
52	Structural insights into the mechanism of archaellar rotational switching. Nature Communications, 2022, 13, .	12.8	1