Fred van Leeuwen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5873487/publications.pdf

Version: 2024-02-01

74 papers

4,802 citations

33 h-index 98798 67 g-index

82 all docs 82 docs citations

times ranked

82

4796 citing authors

#	Article	ΙF	CITATIONS
1	Epi-Decoder: Decoding the Local Proteome of a Genomic Locus by Massive Parallel Chromatin Immunoprecipitation Combined with DNA-Barcode Sequencing. Methods in Molecular Biology, 2022, 2458, 123-150.	0.9	2
2	SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cellular and Molecular Life Sciences, 2022, 79, .	5 . 4	15
3	Histone methyltransferase DOT1L controls stateâ€specific identity during B cell differentiation. EMBO Reports, 2021, 22, e51184.	4.5	27
4	Epigenetics Identifier screens reveal regulators of chromatin acylation and limited specificity of acylation antibodies. Scientific Reports, 2021, 11, 12795.	3.3	1
5	Signals for antigen-independent differentiation of memory CD8+ T cells. Cellular and Molecular Life Sciences, 2021, 78, 6395-6408.	5 . 4	4
6	The histone methyltransferase DOT1L prevents antigen-independent differentiation and safeguards epigenetic identity of CD8 $<$ sup>+ $<$ /sup> T cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20706-20716.	7.1	32
7	Strategy for Development of Site-Specific Ubiquitin Antibodies. Frontiers in Chemistry, 2020, 8, 111.	3.6	7
8	Inhibition of transcription leads to rewiring of locus-specific chromatin proteomes. Genome Research, 2020, 30, 635-646.	5 . 5	10
9	Application of Recombination -Induced Tag Exchange (RITE) to study histone dynamics in human cells. Epigenetics, 2020, 15, 901-913.	2.7	6
10	A genetic interaction map centered on cohesin reveals auxiliary factors in sister chromatid cohesion. Journal of Cell Science, 2020, 133, .	2.0	5
11	Chromatin modified in a molecular reaction chamber. Nature, 2020, 579, 503-504.	27.8	2
12	Conserved crosstalk between histone deacetylation and H3K79 methylation generates DOT1Lâ€dose dependency in HDAC1â€deficient thymic lymphoma. EMBO Journal, 2019, 38, e101564.	7.8	28
13	CD4+ T cell help creates memory CD8+ T cells with innate and help-independent recall capacities. Nature Communications, 2019, 10, 5531.	12.8	106
14	A novel germline variant in the DOT1L gene co-segregating in a Dutch family with a history of melanoma. Melanoma Research, 2019, 29, 582-589.	1.2	7
15	Epi-ID: Systematic and Direct Screening for Chromatin Regulators in Yeast by Barcode-ChIP-Seq. Methods in Molecular Biology, 2019, 2049, 87-103.	0.9	3
16	Drug toxicity profiling of a Saccharomyces cerevisiae deubiquitinase deletion panel shows that acetaminophen mimics tyrosine. Toxicology in Vitro, 2018, 47, 259-268.	2.4	5
17	Dot1 promotes H2B ubiquitination by a methyltransferase-independent mechanism. Nucleic Acids Research, 2018, 46, 11251-11261.	14.5	24
18	Decoding the chromatin proteome of a single genomic locus by DNA sequencing. PLoS Biology, 2018, 16, e2005542.	5.6	14

#	Article	IF	Citations
19	Modeling Distributive Histone Modification by Dot1 Methyltransferases., 2017,, 117-141.		2
20	The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae. PLoS ONE, 2017, 12, e0173573.	2.5	4
21	The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma, 2016, 125, 593-605.	2.2	86
22	Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1. ELife, 2016, 5, .	6.0	22
23	N-terminal acetylation and replicative age affect proteasome localization and cell fitness during aging. Journal of Cell Science, 2015, 128, 109-17.	2.0	36
24	Dot1 histone methyltransferases share a distributive mechanism but have highly diverged catalytic properties. Scientific Reports, 2015, 5, 9824.	3.3	15
25	Yeast PP4 Interacts with ATR Homolog Ddc2-Mec1 and Regulates Checkpoint Signaling. Molecular Cell, 2015, 57, 273-289.	9.7	63
26	The emerging roles of DOT1L in leukemia and normal development. Leukemia, 2014, 28, 2131-2138.	7.2	104
27	Flexibility in crosstalk between H2B ubiquitination and H3 methylation <i>in vivo</i> . EMBO Reports, 2014, 15, 1077-1084.	4.5	34
28	A UV-Induced Genetic Network Links the RSC Complex to Nucleotide Excision Repair and Shows Dose-Dependent Rewiring. Cell Reports, 2013, 5, 1714-1724.	6.4	18
29	Histone exchange: sculpting the epigenome. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2013, 7, 63-79.	1.1	7
30	A Network Model of the Molecular Organization of Chromatin in Drosophila. Molecular Cell, 2013, 49, 759-771.	9.7	58
31	Spatiotemporal analysis of organelle and macromolecular complex inheritance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 175-180.	7.1	43
32	Recombination-Induced Tag Exchange (RITE) Cassette Series to Monitor Protein Dynamics in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2013, 3, 1261-1272.	1.8	15
33	Dot1-Dependent Histone H3K79 Methylation Promotes Activation of the Mek1 Meiotic Checkpoint Effector Kinase by Regulating the Hop1 Adaptor. PLoS Genetics, 2013, 9, e1003262.	3.5	67
34	News about old histones: A role for histone age in controlling the epigenome. Cell Cycle, 2012, 11, 11-12.	2.6	16
35	A Key Role for Chd1 in Histone H3 Dynamics at the 3′ Ends of Long Genes in Yeast. PLoS Genetics, 2012, 8, e1002811.	3.5	62
36	An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks. EMBO Journal, 2012, 31, 3768-3783.	7.8	74

#	Article	IF	CITATIONS
37	Crosstalk between aging and the epigenome. Epigenomics, 2012, 4, 5-7.	2.1	11
38	Progressive methylation of ageing histones by Dot1 functions as a timer. EMBO Reports, 2011, 12, 956-962.	4.5	56
39	Dot1 binding induces chromatin rearrangements by histone methylation-dependent and -independent mechanisms. Epigenetics and Chromatin, 2011, 4, 2.	3.9	28
40	A Modified Epigenetics Toolbox to Study Histone Modifications on the Nucleosome Core. ChemBioChem, 2011, 12, 308-313.	2.6	17
41	Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast. PLoS Biology, 2011, 9, e1001075.	5.6	136
42	A Barcode Screen for Epigenetic Regulators Reveals a Role for the NuB4/HAT-B Histone Acetyltransferase Complex in Histone Turnover. PLoS Genetics, 2011, 7, e1002284.	3.5	25
43	Recombination-induced tag exchange to track old and new proteins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 64-68.	7.1	92
44	Heterologous expression reveals distinct enzymatic activities of two DOT1 histone methyltransferases of <i>Trypanosoma brucei </i> . Journal of Cell Science, 2010, 123, 4019-4023.	2.0	12
45	Two Dot1 isoforms in Saccharomyces cerevisiae as a result of leaky scanning by the ribosome. Nucleic Acids Research, 2009, 37, 7047-7058.	14.5	10
46	Mutational Analysis of the Sir3 BAH Domain Reveals Multiple Points of Interaction with Nucleosomes. Molecular and Cellular Biology, 2009, 29, 2532-2545.	2.3	42
47	Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae. BMC Molecular Biology, 2009, 10, 76.	3.0	25
48	Reconstitution of Yeast Silent Chromatin: Multiple Contact Sites and O-AADPR Binding Load SIR Complexes onto Nucleosomes In Vitro. Molecular Cell, 2009, 33, 323-334.	9.7	103
49	Chemical Biology Approaches to Probe the Proteome. ChemBioChem, 2008, 9, 2913-2919.	2.6	12
50	CD8 [–] dendritic cells preferentially crossâ€present <i>Saccharomyces cerevisiae</i> antigens. European Journal of Immunology, 2008, 38, 370-380.	2.9	51
51	Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Nature Structural and Molecular Biology, 2008, 15, 550-557.	8.2	163
52	Synthetic Lethal Screens Identify Gene Silencing Processes in Yeast and Implicate the Acetylated Amino Terminus of Sir3 in Recognition of the Nucleosome Core. Molecular and Cellular Biology, 2008, 28, 3861-3872.	2.3	53
53	Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO Journal, 2007, 26, 4974-4984.	7.8	153
54	Histone modifications: from genome-wide maps to functional insights. Genome Biology, 2005, 6, 113.	9.6	38

#	Article	IF	Citations
55	The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes and Development, 2004, 18, 1263-1271.	5.9	706
56	The Histone Minority Report. Cell, 2003, 112, 591-593.	28.9	16
57	Assays for gene silencing in yeast. Methods in Enzymology, 2002, 350, 165-186.	1.0	68
58	Dot1p Modulates Silencing in Yeast by Methylation of the Nucleosome Core. Cell, 2002, 109, 745-756.	28.9	771
59	Genome-wide histone modifications: gaining specificity by preventing promiscuity. Current Opinion in Cell Biology, 2002, 14, 756-762.	5.4	7 3
60	Tandemly repeated DNA is a target for the partial replacement of thymine by \hat{l}^2 -d-glucosyl-hydroxymethyluracil in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2000, 109, 133-145.	1.1	54
61	The modified base J is the target for a novelDNA-binding protein in kinetoplastid protozoans. EMBO Journal, 1999, 18, 6573-6581.	7.8	67
62	Control of VSG gene expression sites in Trypanosoma brucei. Molecular and Biochemical Parasitology, 1998, 91, 67-76.	1.1	78
63	Changes in expression site control and DNA modification in Trypanosoma brucei during differentiation of the bloodstream form to the procyclic form. Molecular and Biochemical Parasitology, 1998, 93, 115-130.	1.1	15
64	The modified DNA base \hat{l}^2 -d-glucosyl-hydroxymethyluracil is not found in the tsetse fly stages of Trypanosoma brucei. Molecular and Biochemical Parasitology, 1998, 94, 127-130.	1.1	18
65	The Modified DNA Base \hat{l}^2 -d-Glucosylhydroxymethyluracil Confers Resistance to Micrococcal Nuclease and Is Incompletely Recovered by 32P-Postlabeling. Analytical Biochemistry, 1998, 258, 223-229.	2.4	24
66	Â-D-Glucosyl-hydroxymethyluracil is a conserved DNA modification in kinetoplastid protozoans and is abundant in their telomeres. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2366-2371.	7.1	114
67	Biosynthesis and Function of the Modified DNA Base \hat{l}^2 - <scp>d</scp> -Glucosyl-Hydroxymethyluracil in <i>Trypanosoma brucei</i> . Molecular and Cellular Biology, 1998, 18, 5643-5651.	2.3	68
68	Localization of the modified base J in telomeric <i>VSG</i> gene expression sites of <i>Trypanosoma brucei</i> . Genes and Development, 1997, 11, 3232-3241.	5.9	113
69	\hat{l}^2 -d-glucosyl-hydroxymethyluracil, a novel base in African trypanosomes and other Kinetoplastida. Molecular and Biochemical Parasitology, 1997, 90, 1-8.	1.1	44
70	The telomeric GGGTTA repeats of Trypanosoma brucei contain the hypermodified base J in both strands. Nucleic Acids Research, 1996, 24, 2476-2482.	14.5	80
71	Antigenic variation in malaria. Cell, 1995, 82, 1-4.	28.9	192
72	\hat{l}^2 -d-glucosyl-hydroxymethyluracil: A novel modified base present in the DNA of the parasitic protozoan T. brucei. Cell, 1993, 75, 1129-1136.	28.9	191

#	Article	IF	CITATIONS
73	Control of Antigenic Variation in African Trypanosomas. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 105-114.	1.1	31
74	Antigenic Variation in Trypanosomes. , 1983, , 621-659.		24