Marco Montalti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/587246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Handbook of Photochemistry. , 0, , .		1,335
2	Luminescent chemosensors for transition metal ions. Coordination Chemistry Reviews, 2000, 205, 59-83.	18.8	804
3	A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. Angewandte Chemie - International Edition, 1998, 37, 333-337.	13.8	328
4	An Effective Fluorescent Chemosensor for Mercury Ions. Journal of the American Chemical Society, 2000, 122, 6769-6770.	13.7	302
5	8-Hydroxyquinoline Derivatives as Fluorescent Sensors for Magnesium in Living Cells. Journal of the American Chemical Society, 2006, 128, 344-350.	13.7	273
6	Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chemical Society Reviews, 2014, 43, 4243-4268.	38.1	242
7	Luminescent Silica Nanoparticles: Extending the Frontiers of Brightness. Angewandte Chemie - International Edition, 2011, 50, 4056-4066.	13.8	241
8	Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chemical Society Reviews, 2015, 44, 4853-4921.	38.1	231
9	Luminescent Lanthanide Complexes of a Bis-bipyridine-phosphine-oxide Ligand as Tools for Anion Detection. Journal of the American Chemical Society, 2002, 124, 7779-7788.	13.7	193
10	Electrochemically Induced Molecular Motions in Pseudorotaxanes: A Case of Dualâ€Mode (Oxidative) Tj ETQq0 C) 0 rgBT /C)verlock 10 Tr 164
11	Recent developments in transition metal ion detection by luminescent chemosensors. Coordination Chemistry Reviews, 2000, 208, 17-32.	18.8	164
12	Ru(bpy) ₃ Covalently Doped Silica Nanoparticles as Multicenter Tunable Structures for Electrochemiluminescence Amplification. Journal of the American Chemical Society, 2009, 131, 2260-2267.	13.7	155
13	A Luminescent Anion Sensor Based on a Europium Hybrid Complex. Journal of the American Chemical Society, 2001, 123, 12694-12695.	13.7	140
14	Iridium Doped Silicaâ^'PEG Nanoparticles: Enabling Electrochemiluminescence of Neutral Complexes in Aqueous Media. Journal of the American Chemical Society, 2009, 131, 14208-14209.	13.7	130
15	Hydrogen-Bonded Complexes of Aromatic Crown Ethers with (9-Anthracenyl)methylammonium Derivatives. Supramolecular Photochemistry and Photophysics. pH-Controllable Supramolecular Switching. Journal of the American Chemical Society, 1997, 119, 10641-10651.	13.7	127
16	Luminescent Ruthenium(II) Bipyridylâ^'Phosphonic Acid Complexes:Â pH Dependent Photophysical Behavior and Quenching with Divalent Metal Ions. Inorganic Chemistry, 2000, 39, 76-84.	4.0	127
17	Novel routes to substituted 5,10,15-triarylcorroles. Journal of Porphyrins and Phthalocyanines, 2003, 07, 25-36.	0.8	127

18Photophysical poperties of Schiff-base metal complexes. New Journal of Chemistry, 2003, 27, 692-697.2.8126

#	Article	IF	CITATIONS
19	Enantioselective Fluorescence Sensing of Amino Acids by Modified Cyclodextrins: Role of the Cavity and Sensing Mechanism. Chemistry - A European Journal, 2004, 10, 2749-2758.	3.3	121
20	Kinetics of Place-Exchange Reactions of Thiols on Gold Nanoparticles. Langmuir, 2003, 19, 5172-5174.	3.5	119
21	Characterization of 5-chloro-8-methoxyquinoline appended diaza-18-crown-6 as a chemosensor for cadmium. Tetrahedron Letters, 2001, 42, 2941-2944.	1.4	113
22	Searching for New Luminescent Sensors: Synthesis and Photophysical Properties of a Tripodal Ligand Incorporating the Dansyl Chromophore and of Its Metal Complexes. European Journal of Inorganic Chemistry, 1999, 1999, 455-460.	2.0	111
23	Fluorescence quenching amplification in silica nanosensors for metal ions. Journal of Materials Chemistry, 2005, 15, 2810.	6.7	111
24	Self-Organizing Coreâ^'Shell Nanostructures:  Spontaneous Accumulation of Dye in the Core of Doped Silica Nanoparticles. Journal of the American Chemical Society, 2007, 129, 14251-14256.	13.7	106
25	Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy) ₃ ²⁺ Core–Shell Silica Nanoparticles. Journal of the American Chemical Society, 2016, 138, 15935-15942.	13.7	98
26	Photophysical and Electrochemical Characterisation of the Interactions between Components in Neutral π-Associated [2]Catenanes. Chemistry - A European Journal, 2000, 6, 608-617.	3.3	93
27	Solvent-Induced Modulation of Collective Photophysical Processes in Fluorescent Silica Nanoparticles. Journal of the American Chemical Society, 2002, 124, 13540-13546.	13.7	92
28	Origins of â€~on–off' fluorescent behavior of 8-hydroxyquinoline containing chemosensors. Tetrahedron, 2004, 60, 11139-11144.	1.9	90
29	A fluorescent sensor for magnesium ions. Tetrahedron Letters, 1998, 39, 5451-5454.	1.4	88
30	Temperatureâ€Dependent Fluorescence of Cu ₅ Metal Clusters: A Molecular Thermometer. Angewandte Chemie - International Edition, 2012, 51, 9662-9665.	13.8	87
31	Simple molecular-level machines. Interchange between different threads in pseudorotaxanes. New Journal of Chemistry, 1998, 22, 1061-1065.	2.8	86
32	Photophysical Behaviour of Corrole and its Symmetrical and Unsymmetrical Dyads. , 1999, 03, 364-370.		82
33	Energy Transfer from Silica Coreâ^'Surfactant Shell Nanoparticles to Hosted Molecular Fluorophores. Journal of Physical Chemistry B, 2010, 114, 14605-14613.	2.6	82
34	Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications. Coordination Chemistry Reviews, 2012, 256, 1664-1681.	18.8	82
35	Dynamic Chemical Devices: Modulation of Photophysical Properties by Reversible, Ion-Triggered, and Proton-Fuelled Nanomechanical Shape-Flipping Molecular Motions. Chemistry - A European Journal, 2004, 10, 2953-2959.	3.3	81
36	Prevention of Selfâ€Quenching in Fluorescent Silica Nanoparticles by Efficient Energy Transfer. Angewandte Chemie - International Edition, 2013, 52, 5965-5968.	13.8	80

#	Article	IF	CITATIONS
37	Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. Nanoscale, 2014, 6, 3022-3036.	5.6	80
38	Energy Transfer in Fluorescent Silica Nanoparticles. Langmuir, 2004, 20, 2989-2991.	3.5	79
39	A [Rull(bipy)3]-[1,9-diamino-3,7-diazanonane-4,6-dione] two-component system, as an efficient ON–OFF luminescent chemosensor for Ni2+ and Cu2+ in water, based on an ET (energy transfer) mechanism. Journal of the Chemical Society Dalton Transactions, 1999, , 1381-1386.	1.1	78
40	Synthesis and characterization of \hat{l}^2 -fused porphyrin-BODIPY® dyads. Tetrahedron, 2004, 60, 1099-1106.	1.9	75
41	Synthesis and Functionalization of Germanium Triphenylcorrolate: The First Example of a Partially Brominated Corrole. European Journal of Inorganic Chemistry, 2007, 2007, 2345-2352.	2.0	75
42	Controlling Catenations, Properties and Relative Ring-Component Movements in Catenanes with Aromatic Fluorine Substituentsâ€. Journal of the American Chemical Society, 1997, 119, 12503-12513.	13.7	72
43	Dansylated Polyamines as Fluorescent Sensors for Metal Ions: Photophysical Properties and Stability of Copper(II) Complexes in Solution. Helvetica Chimica Acta, 2001, 84, 690-706.	1.6	72
44	Size Effect on the Fluorescence Properties of Dansyl-Doped Silica Nanoparticles. Langmuir, 2006, 22, 5877-5881.	3.5	72
45	Enhanced Sensitized NIR Luminescence from Gold Nanoparticles via Energy Transfer from Surface-Bound Fluorophores. Journal of the American Chemical Society, 2007, 129, 2418-2419.	13.7	72
46	Induced Fit Interanion Discrimination by Binding-Induced Excimer Formation. Journal of the American Chemical Society, 2008, 130, 4105-4113.	13.7	70
47	Luminescent Silica Nanoparticles for Cancer Diagnosis. Current Medicinal Chemistry, 2013, 20, 2195-2211.	2.4	70
48	C ₆₀ @Lysozyme: Direct Observation by Nuclear Magnetic Resonance of a 1:1 Fullerene Protein Adduct. ACS Nano, 2014, 8, 1871-1877.	14.6	70
49	Benchmarking TD-DFT against Vibrationally Resolved Absorption Spectra at Room Temperature: 7-Aminocoumarins as Test Cases. Journal of Chemical Theory and Computation, 2015, 11, 5371-5384.	5.3	68
50	A supramolecular assembly controlled by anions: threading and unthreading of a pseudorotaxane. Chemical Communications, 1998, , 1461-1462.	4.1	67
51	Energy Transfer from a Fluorescent Hydrogel to a Hosted Fluorophore. Langmuir, 2006, 22, 2299-2303.	3.5	62
52	β-Fused Oligoporphyrins: A Novel Approach to a New Type of Extended Aromatic System. Journal of the American Chemical Society, 2000, 122, 11295-11302.	13.7	61
53	Fully reversible guest exchange in tetraphosphonate cavitand complexes probed by fluorescence spectroscopy. Chemical Communications, 2008, , 1638.	4.1	61
54	A Strategy for the Assembly of Multiple Porphyrin Arrays Based on the Coordination Chemistry of Ru-Centered Porphyrin Pentamers. Journal of Organic Chemistry, 2001, 66, 4476-4486.	3.2	60

Marco Montalti

#	Article	IF	CITATIONS
55	The Erratic Emission of Pyrene on Gold Nanoparticles. ACS Nano, 2008, 2, 77-84.	14.6	60
56	Amplified Fluorescence Response of Chemosensors Grafted onto Silica Nanoparticles. Langmuir, 2008, 24, 8387-8392.	3.5	58
57	Molecular Recognition on a Cavitand-Functionalized Silicon Surface. Journal of the American Chemical Society, 2009, 131, 7447-7455.	13.7	58
58	Pseudorotaxanes and Catenanes Containing a Redox-Active Unit Derived from Tetrathiafulvalene. European Journal of Organic Chemistry, 1999, 1999, 985-994.	2.4	56
59	Multicolor core/shell silicananoparticles for in vivo and ex vivo imaging. Nanoscale, 2012, 4, 824-830.	5.6	55
60	Mimicking Natural Human Hair Pigmentation with Synthetic Melanin. ACS Central Science, 2020, 6, 1179-1188.	11.3	55
61	Highly Selective Chemical Vapor Sensing by Molecular Recognition: Specific Detection of C ₁ –C ₄ Alcohols with a Fluorescent Phosphonate Cavitand. Angewandte Chemie - International Edition, 2011, 50, 4654-4657.	13.8	54
62	A versatile strategy for tuning the color of electrochemiluminescence using silica nanoparticles. Chemical Communications, 2012, 48, 4187.	4.1	54
63	Multicolor, large-area fluorescence sensing through oligothiophene-self-assembled monolayers. Chemical Communications, 2011, 47, 1689-1691.	4.1	51
64	Luminescent Chemosensors Based on Silica Nanoparticles. Topics in Current Chemistry, 2010, 300, 93-138.	4.0	50
65	Luminescent gold nanoclusters as biocompatible probes for optical imaging and theranostics. Dyes and Pigments, 2016, 135, 64-79.	3.7	50
66	New europium(iii) complexes containing hybrid ligands with hard and soft complexation centres. New Journal of Chemistry, 2003, 27, 134-139.	2.8	48
67	Amphiphilic porphyrin film on glass as a simple and selective solid-state chemosensor for aqueous Hg2+. Biosensors and Bioelectronics, 2006, 22, 399-404.	10.1	48
68	Photo-tunable multicolour fluorescence imaging based on self-assembled fluorogenic nanoparticles. Chemical Communications, 2014, 50, 5326.	4.1	48
69	The synthesis of azacrown ethers with quinoline-based sidearms as potential zinc(II) fluorophores. Tetrahedron, 2002, 58, 4809-4815.	1.9	46
70	A new pyridine-based 12-membered macrocycle functionalised with different fluorescent subunits; coordination chemistry towards Cull, Znll, Cdll, Hgll, and Pbll. Dalton Transactions, 2004, , 2771-2779.	3.3	45
71	Towards Ultraâ€Bright Gold Nanoclusters. European Journal of Inorganic Chemistry, 2017, 2017, 5068-5084.	2.0	44
72	A Versatile Strategy for Signal Amplification Based on Core/Shell Silica Nanoparticles. Chemistry - A European Journal, 2011, 17, 13429-13432.	3.3	42

#	Article	IF	CITATIONS
73	Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. Nanomaterials, 2020, 10, 2276.	4.1	42
74	Luminescence signalled enantiomeric recognition of chiral organic ammonium ions by an enantiomerically pure dimethylacridino-18-crown-6 ligand. New Journal of Chemistry, 2000, 24, 781-785.	2.8	41
75	Luminescent chemosensors based on silicananoparticles for the detection of ionic species. New Journal of Chemistry, 2013, 37, 28-34.	2.8	41
76	Local pH oscillations witness autocatalytic self-organization of biomorphic nanostructures. Nature Communications, 2017, 8, 14427.	12.8	40
77	Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26057-26065.	7.1	39
78	Pluronic-Silica (PluS) Nanoparticles Doped with Multiple Dyes Featuring Complete Energy Transfer. Journal of Physical Chemistry C, 2014, 118, 9261-9267.	3.1	37
79	Photophysics of 1,3-alternate calix[4]arene-crowns and of their metal ion complexes: evidence for cation–΀ interactions in solution. New Journal of Chemistry, 2000, 24, 155-158.	2.8	36
80	Self-Assembly of Nanosize Coordination Cages on Si(100) Surfaces. Chemistry - A European Journal, 2007, 13, 6891-6898.	3.3	36
81	Hierarchical Self-Assembly on Silicon. Journal of the American Chemical Society, 2010, 132, 4781-4789.	13.7	36
82	Convenient syntheses and preliminary photophysical properties of novel 8-aminoquinoline appended diaza-18-crown-6 ligands. Tetrahedron, 2001, 57, 7623-7628.	1.9	35
83	Photoswitchable NIRâ€Emitting Gold Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 11064-11068.	13.8	35
84	Ultra-bright and stimuli-responsive fluorescent nanoparticles for bioimaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 139-150.	6.1	35
85	Source and Biological Response of Biochar Organic Compounds Released into Water; Relationships with Bio-Oil Composition and Carbonization Degree. Environmental Science & Technology, 2017, 51, 6580-6589.	10.0	35
86	Spontaneous deposition of amphiphilic porphyrin films on glassElectronic supplementary information (ESI) available: detailed kinetic studies and procedures, and aggregation studies on 1H2 and 2H2. See http://www.rsc.org/suppdata/nj/b4/b403591g/. New Journal of Chemistry, 2004, 28, 1123.	2.8	34
87	A versatile synthetic strategy for construction of large oligomers: binding and photophysical properties of a nine-porphyrin array. Chemical Communications, 1999, , 1083-1084.	4.1	33
88	Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer. International Journal of Nanomedicine, 2012, 7, 4797.	6.7	31
89	Understanding the photophysical properties of coumarin-based Pluronic–silica (PluS) nanoparticles by means of time-resolved emission spectroscopy and accurate TDDFT/stochastic calculations. Physical Chemistry Chemical Physics, 2013, 15, 12360.	2.8	31
90	C ₆₀ @lysozyme: a new photosensitizing agent for photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 6608-6615.	5.8	31

#	Article	IF	CITATIONS
91	Modulation of the Photophysical Properties of Gold Nanoparticles by Accurate Control of the Surface Coverage. Langmuir, 2004, 20, 7884-7886.	3.5	29
92	Reversible photoswitching of dye-doped core–shell nanoparticles. Chemical Communications, 2011, 47, 10975.	4.1	28
93	Quercetin loaded gelatin films with modulated release and tailored anti-oxidant, mechanical and swelling properties. Food Hydrocolloids, 2020, 109, 106089.	10.7	28
94	A Simple Spectrofluorometric Assay to Measure Total Intracellular Magnesium by a Hydroxyquinoline Derivative. Journal of Fluorescence, 2009, 19, 11-19.	2.5	27
95	Self-Assembled Biocompatible Fluorescent Nanoparticles for Bioimaging. Frontiers in Chemistry, 2019, 7, 168.	3.6	26
96	Extending photocatalysis to the visible and NIR: the molecular strategy. Nanoscale, 2021, 13, 9147-9159.	5.6	26
97	Photoinduced Processes between Pyrene-Functionalized Silicon Nanocrystals and Carbon Allotropes. Chemistry of Materials, 2015, 27, 4390-4397.	6.7	25
98	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 41, 123-127.	1.6	24
99	A convenient synthesis and preliminary photophysical study of novel fluoroionophores: macrocyclic polyamines containing two dansylamidoethyl side arms. Tetrahedron, 2001, 57, 87-91.	1.9	24
100	Phosphine and Phosphonite Complexes of a Ru(II) Porphyrin. 2. Photophysical and Electrochemical Studies. Inorganic Chemistry, 2002, 41, 5269-5275.	4.0	24
101	Quinoline-Containing Calixarene Fluoroionophores: A Combined NMR, Photophysical and Modeling Study. European Journal of Organic Chemistry, 2003, 2003, 1475-1485.	2.4	24
102	Synthesis, photophysical characterisation and metal ion binding properties of new ligands containing anthracene chromophores. Inorganica Chimica Acta, 2004, 357, 4078-4084.	2.4	24
103	Electronic energy transfer in adducts of aromatic crown ethers with protonated 9-methylaminomethylanthracene. Chemical Communications, 1996, , 2011.	4.1	23
104	Luminescent Chemosensors Based on Anthracene or Dioxyxanthone Derivatives. Journal of Fluorescence, 2000, 10, 71-71.	2.5	23
105	Solvent-induced switching between two supramolecular assemblies of a guanosine–terthiophene conjugate. Organic and Biomolecular Chemistry, 2010, 8, 774-781.	2.8	23
106	Bioinspired Nanocomposites: Ordered 2D Materials Within a 3D Lattice. Advanced Functional Materials, 2016, 26, 5569-5575.	14.9	23
107	Synthesis and Electrochemiluminescence of a Ru(bpy) ₃ -Labeled Coupling Adduct Produced on a Self-Assembled Monolayer. Journal of Physical Chemistry C, 2008, 112, 2949-2957.	3.1	22
108	Role of CaCO ₃ ° Neutral Pair in Calcium Carbonate Crystallization. Crystal Growth and Design, 2016, 16, 4173-4177.	3.0	22

#	Article	IF	CITATIONS
109	A Bioâ€Conjugated Fullerene as a Subcellularâ€Targeted and Multifaceted Phototheranostic Agent. Advanced Functional Materials, 2021, 31, 2101527.	14.9	22
110	Facile tuning from blue to white emission in silica nanoparticles doped with oligothiophene fluorophores. Journal of Materials Chemistry, 2010, 20, 9903.	6.7	21
111	Modulation of Photochemical Properties in Ionâ€Controlled Multicomponent Dynamic Devices. European Journal of Inorganic Chemistry, 2009, 2009, 2621-2628.	2.0	20
112	Luminescent calcium phosphate bioceramics doped with europium derived from fish industry byproducts. Journal of the American Ceramic Society, 2017, 100, 3402-3414.	3.8	19
113	Photocatalytic activity of exfoliated graphite–TiO ₂ nanoparticle composites. Nanoscale, 2019, 11, 19301-19314.	5.6	18
114	Stable and Biocompatible Monodispersion of C ₆₀ in Water by Peptides. Bioconjugate Chemistry, 2019, 30, 808-814.	3.6	18
115	The synthesis and complexation studies of thia-anthracene receptors. Tetrahedron, 1999, 55, 11553-11562.	1.9	17
116	Biocompatible and Light-Penetrating Hydrogels for Water Decontamination. ACS Omega, 2018, 3, 8122-8128.	3.5	17
117	Radical-Enriched Artificial Melanin. Chemistry of Materials, 2020, 32, 5759-5767.	6.7	17
118	Synthesis, Complexation and Photophysics of <i>1,3-alternate</i> Calix[4]arene-crowns-6 Bearing Fluorophoric Units on the Bridge. Supramolecular Chemistry, 2001, 13, 419-434.	1.2	16
119	Double helical and monomeric Ag(i) and Zn(ii) complexes of 1,2-cyclohexanediyl-bis(iminophenanthridine) ligands. Dalton Transactions, 2003, , 4340.	3.3	16
120	Stabilization of terpyridine covered gold nanoparticles by metal ions complexation. New Journal of Chemistry, 2007, 31, 102-108.	2.8	16
121	Multimetallic porphyrin monomers. Chemical Communications, 1998, , 2031-2032.	4.1	15
122	Photoluminescenceâ€Based Techniques for the Detection of Micro―and Nanoplastics. Chemistry - A European Journal, 2021, 27, 17529-17541.	3.3	14
123	Make sense of nanochemistry and nanotechnology. Chemistry Education Research and Practice, 2008, 9, 5-10.	2.5	13
124	Photothermal sensitisation and therapeutic properties of a novel far-red absorbing cyanine. Photochemical and Photobiological Sciences, 2009, 8, 1422-1431.	2.9	13
125	On the Versatile Role of Electrospun Polymer Nanofibers as Photocatalytic Hybrid Materials Applied to Contaminated Water Remediation: A Brief Review. Nanomaterials, 2022, 12, 756.	4.1	13
126	Graphene Materials Strengthen Aqueous Polyurethane Adhesives. ACS Omega, 2018, 3, 8829-8835.	3.5	12

#	Article	IF	CITATIONS
127	Probes and Sensors for Cations. , 2005, , 1-57.		11
128	Tuning Mechanical Properties of Pseudopeptide Supramolecular Hydrogels by Graphene Doping. Molecules, 2019, 24, 4345.	3.8	11
129	Absorption and luminescence as a function of pH for carboxylic acid-functionalized ReI tricarbonyls. Journal of Organometallic Chemistry, 2000, 593-594, 267-273.	1.8	10
130	Luminescence of Gold Nanoparticles. , 2007, , 99-128.		10
131	Insights on the chemistry of a,c-biladienes from a CSPT investigation. New Journal of Chemistry, 2008, 32, 1162.	2.8	10
132	Fullerenol entrapment in calcite microspheres. Chemical Communications, 2011, 47, 10662.	4.1	10
133	The Photophysics and Photochemistry of Melanin―Like Nanomaterials Depend on Morphology and Structure. Chemistry - A European Journal, 2021, 27, 16309-16319.	3.3	10
134	Photophysical Characterisation, Metal Ion Binding and Enantiomeric Recognition of Chiral Ligands Containing Phenazine Fluorophore. Collection of Czechoslovak Chemical Communications, 2004, 69, 885-896.	1.0	10
135	Dye Encapsulation in Polynorbornene Micelles. Langmuir, 2015, 31, 9707-9717.	3.5	9
136	Characterization of titanium dioxide nanoparticles imprinted for tyrosine by flow field-flow fractionation and spectrofluorimetric analysis. Inorganica Chimica Acta, 2007, 360, 1063-1071.	2.4	8
137	Structural Changes in a Protein Fragment from Abalone Shell during the Precipitation of Calcium Carbonate. Chemistry - A European Journal, 2012, 18, 14367-14374.	3.3	8
138	Dualâ€Mode, Anisotropyâ€Encoded, Ratiometric Fluorescent Nanosensors: Towards Multiplexed Detection. Chemistry - A European Journal, 2018, 24, 16743-16746.	3.3	8
139	A Selective Ratiometric Fluorescent Probe for No-Wash Detection of PVC Microplastic. Polymers, 2021, 13, 1588.	4.5	8
140	Metal ion binding of photoactive poly-(arylene ethynylene) co-polymers. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 237-241.	3.9	7
141	Energy Transfer in Silica Nanoparticles: An Essential Tool for the Amplification of the Fluorescence Signal. Reviews in Fluorescence, 2010, , 119-137.	0.5	7
142	Photoswitchable NIRâ€Emitting Gold Nanoparticles. Angewandte Chemie, 2016, 128, 11230-11234.	2.0	7
143	Local detection of pH-induced disaggregation of biocompatible micelles by fluorescence switch ON. Chemical Science, 2022, 13, 4884-4892.	7.4	7
144	Synthesis, characterisation and metal ion binding properties of crown ethers incorporating 4,5-dioxyxanthones. Journal of the Chemical Society Perkin Transactions II, 1999, , 289-296.	0.9	6

Marco Montalti

#	Article	IF	CITATIONS
145	Self-Assembly of Monolayer-Coated Silver Nanoparticles on Gold Electrodes. An Electrochemical Investigation. Collection of Czechoslovak Chemical Communications, 2003, 68, 1395-1406.	1.0	6
146	Collective Properties Extend Resistance to Photobleaching of Highly Doped PluS NPs. European Journal of Inorganic Chemistry, 2017, 2017, 5094-5097.	2.0	5
147	Visibleâ€Lightâ€Assisted Synthesis of Allylic Triflamides via Dual Acridinium/Co Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 720-725.	4.3	5
148	pH-dependent absorption and emission properties of a Rel complex working as a carboxylate ligand for Cu2+. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 249-252.	3.9	4
149	Tracking graphene by fluorescence imaging: a tool for detecting multiple populations of graphene in solution. Nanoscale, 2016, 8, 8505-8511.	5.6	4
150	pH Switchable Water Dispersed Photocatalytic Nanoparticles. Chemistry - A European Journal, 2022, 28, .	3.3	4
151	Synthesis, complexation properties and spectroscopic studies of the cation-induced conformational changes of some new oligooxaethylene-spacered diporphyrin arrays. New Journal of Chemistry, 2001, 25, 597-605.	2.8	3
152	Local Lightâ€Controlled Generation of Calcium Carbonate and Barium Carbonate Biomorphs via Photochemical Stimulation. Chemistry - A European Journal, 2021, 27, 12521-12525.	3.3	3
153	Gold nanoparticles stabilized using a fluorescent propargylic ester terminal alkyne at room temperature. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	2
154	Photothermal motion: effect of low-intensity irradiation on the thermal motion of organic nanoparticles. Nanoscale, 2022, 14, 7233-7241.	5.6	2
155	A Convenient Synthesis of Novel Fluorophores: Macrocyclic Polyamines Containing Two Dansylamidoethyl Side Arms. Synlett, 2000, 2000, 1181-1183.	1.8	1
156	Fluorescent silica nanoparticles. , 2006, , .		1
157	Origins of ?on?off? Fluorescent Behavior of 8-Hydroxyquinoline Containing Chemosensors ChemInform, 2005, 36, no.	0.0	0
158	New fluorescent chemosensors for magnesium ions in living cells. , 2006, , .		0
159	Absorption and Emission Spectroscopy with Polarized Light. Lecture Notes in Quantum Chemistry II, 2012, , 131-165.	0.3	0
160	Frontispiece: The Photophysics and Photochemistry of Melanin―Like Nanomaterials Depend on Morphology and Structure. Chemistry - A European Journal, 2021, 27, .	3.3	0
161	Frontispiece: Photoluminescenceâ€Based Techniques for the Detection of Micro―and Nanoplastics. Chemistry - A European Journal, 2021, 27, .	3.3	0