Etienne Joly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871873/publications.pdf Version: 2024-02-01

FTIENNE LOLV

#	Article	IF	CITATIONS
1	SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species. ELife, 2022, 11, .	6.0	2
2	SARS-CoV-2 Infection in Companion Animals: Prospective Serological Survey and Risk Factor Analysis in France. Viruses, 2022, 14, 1178.	3.3	18
3	A haemagglutination test for rapid detection of antibodies to SARS-CoV-2. Nature Communications, 2021, 12, 1951.	12.8	54
4	Confronting Covid-19 by exploring the possibility of vaccinating with live SARS-CoV-2 virus itself, via a route that would reduce the incidence of pulmonary complications. F1000Research, 2020, 9, 309.	1.6	1
5	Fluorinated analogues of lipidic dialkynylcarbinol pharmacophores: synthesis and cytotoxicity in HCT116 cancer cells. French-Ukrainian Journal of Chemistry, 2019, 7, 1-9.	0.4	2
6	Skeletal Optimization of Cytotoxic Lipidic Dialkynylcarbinols. ChemMedChem, 2018, 13, 1124-1130.	3.2	8
7	Methinylogation Approach in Chiral Pharmacophore Design: from Alkynyl―to Allenylâ€carbinol Warheads against Tumor Cells. ChemMedChem, 2018, 13, 1711-1722.	3.2	9
8	From Natural to Artificial Antitumor Lipidic Alkynylcarbinols: Asymmetric Synthesis, Enzymatic Resolution, and Refined SARs. Synthesis, 2018, 50, 3114-3130.	2.3	8
9	Baseball and jet lag: Correlation does not imply causation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3168-E3168.	7.1	2
10	Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells. F1000Research, 2017, 6, 763.	1.6	20
11	Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells. F1000Research, 2017, 6, 763.	1.6	18
12	Ethynylogation approach in antitumor lipid pharmacochemistry: from dialkynyl-carbinols to trialkynyl-carbinols. French-Ukrainian Journal of Chemistry, 2017, 5, 24-34.	0.4	1
13	Ethynylogation approach in pharmacophore design: from alkynyl-to butadiynyl-carbinols vs antitumoral cytotoxicity. Tetrahedron, 2016, 72, 6697-6704.	1.9	13
14	Extended structural modulation of bio-inspired chiral lipidic alkynylcarbinols as antitumor pharmacophores. Tetrahedron, 2015, 71, 7920-7930.	1.9	14
15	Fluorophore-tagged pharmacophores for antitumor cytotoxicity: Modified chiral lipidic dialkynylcarbinols for cell imaging. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4652-4656.	2.2	18
16	Crystallization around solid-like nanosized docks can explain the specificity, diversity, and stability of membrane microdomains. Frontiers in Plant Science, 2014, 5, 72.	3.6	41
17	Characterization of M-laurdan, a versatile probe to explore order in lipid membranes. F1000Research, 2014, 3, 172.	1.6	20
18	Characterization of M-laurdan, a versatile probe to explore order in lipid membranes. F1000Research, 2014, 3, 172.	1.6	8

#	Article	IF	CITATIONS
19	Isoform-specific anti-MeCP2 antibodies confirm that expression of the e1 isoform strongly predominates in the brain. F1000Research, 2013, 2, 204.	1.6	10
20	The existence of species rests on a metastable equilibrium between inbreeding and outbreeding. An essay on the close relationship between speciation, inbreeding and recessive mutations. Biology Direct, 2011, 6, 62.	4.6	10
21	Proteolipidic Composition of Exosomes Changes during Reticulocyte Maturation. Journal of Biological Chemistry, 2011, 286, 34426-34439.	3.4	151
22	Essay: On the close relationship between speciation, inbreeding and recessive mutations Nature Precedings, 2010, , .	0.1	1
23	Preferential Transfer of Certain Plasma Membrane Proteins onto T and B Cells by Trogocytosis. PLoS ONE, 2010, 5, e8716.	2.5	37
24	Immune Responses Elicited in Tertiary Lymphoid Tissues Display Distinctive Features. PLoS ONE, 2010, 5, e11398.	2.5	40
25	One-step split GFP staining for sensitive protein detection and localization in mammalian cells. BioTechniques, 2010, 49, 727-736.	1.8	53
26	The Direction of Plasma Membrane Exchange between Lymphocytes and Accessory Cells by Trogocytosis Is Influenced by the Nature of the Accessory Cell. Journal of Immunology, 2010, 184, 1897-1908.	0.8	55
27	Could CD4 Capture by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>CD</mml:mtext> <mml:msup> mathvariant="bold">8 <mml:mo mathvariant="bold">+ </mml:mo </mml:msup> </mml:mrow> T Cells Play a Role in HIV</mml:math 	<mml:mn 3.0</mml:mn 	10
28	Spreading: Journal of Bonnedicine and Biotechnology, 2000, 2000, 2000, 2000 Suitability of various membrane lipophilic probes for the detection of trogocytosis by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 380-389.	1.5	31
29	Improving administration regimens of CyaA-based vaccines using TRAP assays to detect antigen-specific CD8+ T cells directly ex vivo. Vaccine, 2009, 27, 5565-5573.	3.8	2
30	Capture of plasma membrane fragments from target cells by trogocytosis requires signaling in T cells but not in B cells. Blood, 2008, 111, 5621-5628.	1.4	82
31	Capture of Target Cell Membrane Components via Trogocytosis Is Triggered by a Selected Set of Surface Molecules on T or B Cells. Journal of Immunology, 2007, 178, 3637-3647.	0.8	80
32	Optimising Blue Fluorescent Protein (BFP) for use as a mammalian reporter gene in parallel with Green Fluorescent Protein (GFP) Nature Precedings, 2007, , .	0.1	3
33	Design of an improved set of oligonucleotide primers for genotyping MeCP2tm1.1BirdKO mice by PCR. Molecular Neurodegeneration, 2007, 2, 16.	10.8	17
34	Tracking antigen-specific CD8+ T cells in the rat using MHC class I multimers. Journal of Immunological Methods, 2007, 320, 30-39.	1.4	17
35	High Levels of MeCP2 Depress MHC Class I Expression in Neuronal Cells. PLoS ONE, 2007, 2, e1354.	2.5	16
36	The orthology of HLA-E and H2-Qa1 is hidden by their concerted evolution with other MHC class I molecules. Biology Direct, 2006, 1, 2.	4.6	30

#	Article	IF	CITATIONS
37	Various hypotheses on MHC evolution suggested by the concerted evolution of CD94L and MHC class Ia molecules. Biology Direct, 2006, 1, 3.	4.6	1
38	A simple trogocytosis-based method to detect, quantify, characterize and purify antigen-specific live lymphocytes by flow cytometry, via their capture of membrane fragments from antigen-presenting cells. Nature Protocols, 2006, 1, 2536-2542.	12.0	54
39	A very rapid and simple assay based on trogocytosis to detect and measure specific T and B cell reactivity by flow cytometry. European Journal of Immunology, 2006, 36, 779-788.	2.9	52
40	Further Advantages of a Unique Author Identification Number. PLoS Medicine, 2006, 3, e368.	8.4	2
41	Direct and Indirect Effects of Alloantibodies Link Neointimal and Medial Remodeling in Graft Arteriosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2359-2365.	2.4	32
42	T cell activation correlates with an increasedproportion of antigen among the materials acquiredfrom target cells. European Journal of Immunology, 2005, 35, 2284-2294.	2.9	52
43	Lymphoid neogenesis in chronic rejection: Evidence for a local humoral alloimmune response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14723-14728.	7.1	227
44	Hypothesis: could the signalling function of membrane microdomains involve a localized transition of lipids from liquid to solid state?. , 2004, 5, 3.		18
45	Characterisation of RT1-E2, a multigenic family of highly conserved rat non-classical MHC class I molecules initially identified in cells from immunoprivileged sites. BMC Immunology, 2003, 4, 7.	2.2	12
46	What is trogocytosis and what is its purpose?. Nature Immunology, 2003, 4, 815-815.	14.5	462
47	A Novel Instance of Class I Modification (<i>cim</i>) Affecting Two of Three Rat Class I RT1-A Molecules Within One MHC Haplotype. Journal of Immunology, 2003, 171, 274-284.	0.8	7
48	Crystal Structures of Two Rat MHC Class Ia (RT1-A) Molecules that are Associated Differentially with Peptide Transporter Alleles TAP-A and TAP-B. Journal of Molecular Biology, 2002, 324, 975-990.	4.2	12
49	Regional specification of rodent and human neurospheres. Developmental Brain Research, 2002, 134, 43-55.	1.7	185
50	Active trans-synaptic capture of membrane fragments by natural killer cells. European Journal of Immunology, 2002, 32, 1502.	2.9	87
51	Ly49i2 is an inhibitory rat natural killer cell receptor for an MHC class Ia molecule (RT1-A1c). European Journal of Immunology, 2002, 32, 2031.	2.9	29
52	Two Different, Highly Exposed, Bulged Structures for an Unusually Long Peptide Bound to Rat MHC Class I RT1-Aa. Immunity, 2001, 14, 81-92.	14.3	113
53	Cutting Edge: CTLs Rapidly Capture Membrane Fragments from Target Cells in a TCR Signaling-Dependent Manner. Journal of Immunology, 2001, 166, 3645-3649.	0.8	206
54	Detection of transcripts for a soluble form of the RT1-E MHC class Ib molecule in rat placenta. Immunogenetics, 2001, 53, 351-356.	2.4	5

#	Article	IF	CITATIONS
55	Analysis of neural stem cells by flow cytometry: cellular differentiation modifies patterns of MHC expression. Journal of Neuroimmunology, 2001, 112, 35-46.	2.3	100
56	Peptide binding characteristics of the non-classical class Ib MHC molecule HLA-E assessed by a recombinant random peptide approach. BMC Immunology, 2001, 2, 5.	2.2	43
57	Genetic control of peripheral TCRAV usage by representation in the preselection repertoire and MHC allele-specific overselection. International Immunology, 2001, 13, 63-73.	4.0	4
58	Normal polyclonal immunoglobulins (â€~īVlg') inhibit microglial phagocytosis in vitro. Journal of Neuroimmunology, 2000, 106, 137-144.	2.3	42
59	Comparison of RT-BM1 sequences from six different rat major histocompatibility complex haplotypes reveals limited variation, and alternate splicing in the 3′ untranslated region. Immunogenetics, 2000, 51, 148-153.	2.4	9
60	Cloning of three different species of MHC class I cDNAs of the RT1 g haplotype from the NEDH rat. Immunogenetics, 2000, 51, 503-507.	2.4	5
61	Peptide Specificity of RT1-A1c, an Inhibitory Rat Major Histocompatibility Complex Class I Natural Killer Cell Ligand. Journal of Biological Chemistry, 2000, 275, 29217-29224.	3.4	15
62	Analysis of peptide length preference of the rat MHC class Ia molecule RT1-Au, by a modified random peptide library approach. International Immunology, 2000, 12, 83-89.	4.0	5
63	NK Cells Modulate MHC Class I Expression on Tumor Cells and their Susceptibility to Lysis. Immunobiology, 2000, 202, 326-338.	1.9	9
64	Co-evolution of rat TAP transporters and MHC class I RT1-A molecules. Current Biology, 1998, 8, 169-180.	3.9	75
65	Peptide length preferences for rat and mouse MHC class I molecules using random peptide libraries. European Journal of Immunology, 1998, 28, 1272-1279.	2.9	32
66	Why are there two rat TAPs?. Trends in Immunology, 1998, 19, 580-585.	7.5	16
67	An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Research, 1998, 26, 1848-1850.	14.5	229
68	Efficient Generation of Major Histocompatibility Complex Class I-Peptide Complexes Using Synthetic Peptide Libraries. Journal of Biological Chemistry, 1998, 273, 2874-2884.	3.4	34
69	Positive and negative MHC class I recognition by rat NK cells. Immunological Reviews, 1997, 155, 91-104.	6.0	51
70	Technical hitches in rat MHC class I gene mapping. Immunogenetics, 1997, 47, 2-4.	2.4	1
71	The Rat cim Effect: TAP Allele-Dependent Changes in a Class I MHC Anchor Motif and Evidence Against C-Terminal Trimming of Peptides in the ER. Immunity, 1996, 4, 159-165.	14.3	109
72	Isolation of a functional cDNA encoding the RT1.Au MHC class I heavy chain by a novel PCR-based method. Immunogenetics, 1995, 41, 326-8.	2.4	39

#	Article	IF	CITATIONS
73	The distribution of Tap2 alleles among laboratory rat RT1 haplotypes. Immunogenetics, 1994, 40, 45-53.	2.4	49
74	Addition of heat-killed bacteria to the selective medium enhances transformation of Dictyostelium discoideum. Trends in Genetics, 1993, 9, 157-158.	6.7	10
75	Neuronal cells are deficient in loading peptides onto MHC class I molecules. Neuron, 1992, 8, 1185-1190.	8.1	103
76	Generation of a functional cDNA encoding the LdH2 class-I molecule by using a single-LTR retroviral shuttle vector. Gene, 1991, 97, 213-221.	2.2	11
77	Manufacture of a functional cDNA for the H-2Db molecule using a retroviral shuttle vector. Immunogenetics, 1991, 34, 62-65.	2.4	12
78	Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science, 1991, 253, 1283-1285.	12.6	315
79	Vaccination and protection from a lethal viral infection: Identification, incorporation, and use of a cytotoxic T lymphocyte glycoprotein epitope. Virology, 1990, 178, 393-400.	2.4	152
80	Molecular analyses of a five-amino-acid cytotoxic T-lymphocyte (CTL) epitope: an immunodominant region which induces nonreciprocal CTL cross-reactivity. Journal of Virology, 1989, 63, 4303-4310.	3.4	165
81	Polymorphism of cytotoxic T-lymphocyte clones that recognize a defined nine-amino-acid immunodominant domain of lymphocytic choriomeningitis virus glycoprotein. Journal of Virology, 1989, 63, 1845-1851.	3.4	23