Dan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5871677/publications.pdf Version: 2024-02-01

DAN WANG

#	Article	IF	CITATIONS
1	Experimental Infection of Horses with Influenza D Virus. Viruses, 2022, 14, 661.	3.3	3
2	Emergence of new phylogenetic lineage of Influenza D virus with broad antigenicity in California, United States. Emerging Microbes and Infections, 2021, 10, 739-742.	6.5	24
3	The first decade of research advances in influenza D virus. Journal of General Virology, 2021, 102, .	2.9	22
4	Isolation and development of bovine primary respiratory cells as model to study influenza D virus infection. Virology, 2021, 559, 89-99.	2.4	4
5	Functional study of a role of N-terminal HA stem region of swine influenza A virus in virus replication. Veterinary Microbiology, 2021, 258, 109132.	1.9	Ο
6	ldentification of One Critical Amino Acid Residue of the Nucleoprotein as a Determinant for <i>In Vitro</i> Replication Fitness of Influenza D Virus. Journal of Virology, 2021, 95, e0097121.	3.4	3
7	Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses—A Comparative Review on Influenza C and D. Pathogens, 2021, 10, 1583.	2.8	4
8	Genetic and antigenic characteristics of a human influenza C virus clinical isolate. Journal of Medical Virology, 2020, 92, 161-166.	5.0	6
9	Influenza D virus. Current Opinion in Virology, 2020, 44, 154-161.	5.4	29
10	Human Monoclonal Antibody Derived from Transchromosomic Cattle Neutralizes Multiple H1 Clades of Influenza A Virus by Recognizing a Novel Conformational Epitope in the Hemagglutinin Head Domain. Journal of Virology, 2020, 94, .	3.4	6
11	Influenza A Virus Antibodies with Antibody-Dependent Cellular Cytotoxicity Function. Viruses, 2020, 12, 276.	3.3	23
12	Where did SARS oVâ€2 come from?. Veterinary Record, 2020, 186, 254-254.	0.3	20
13	PSGL-1 Restricts HIV-1 Infectivity by Blocking Virus Particle Attachment to Target Cells. Proceedings (mdpi), 2020, 50, 77.	0.2	Ο
14	Influenza D virus diverges from its related influenza C virus in the recognition of 9-O-acetylated N-acetyl- or N-glycolyl-neuraminic acid-containing glycan receptors. Virology, 2020, 545, 16-23.	2.4	25
15	PSGL-1 restricts HIV-1 infectivity by blocking virus particle attachment to target cells. Proceedings of the United States of America, 2020, 117, 9537-9545.	7.1	38
16	Next-Generation Sequencing Analysis of Cellular Response to Influenza B Virus Infection. Viruses, 2020, 12, 383.	3.3	3
17	Development and Characterization of a Reverse-Genetics System for Influenza D Virus. Journal of Virology, 2019, 93, .	3.4	15
18	Influenza A in Bovine Species: A Narrative Literature Review. Viruses, 2019, 11, 561.	3.3	19

Dan Wang

#	Article	IF	CITATIONS
19	Contribution of Host Immune Responses Against Influenza D Virus Infection Toward Secondary Bacterial Infection in a Mouse Model. Viruses, 2019, 11, 994.	3.3	13
20	A Novel Enzootic Nasal Tumor Virus Circulating in Goats from Southern China. Viruses, 2019, 11, 956.	3.3	5
21	Pre-exposure with influenza A virus A/WSN/1933(H1N1) resulted in viral shedding reduction from pigs challenged with either swine H1N1 or H3N2 virus. Veterinary Microbiology, 2019, 228, 26-31.	1.9	2
22	Development and characterization of swine primary respiratory epithelial cells and their susceptibility to infection by four influenza virus types. Virology, 2019, 528, 152-163.	2.4	19
23	A DNA Vaccine Expressing Consensus Hemagglutinin-Esterase Fusion Protein Protected Guinea Pigs from Infection by Two Lineages of Influenza D Virus. Journal of Virology, 2018, 92, .	3.4	13
24	Phylogenetic Analysis and Characterization of a Sporadic Isolate of Equine Influenza A H3N8 from an Unvaccinated Horse in 2015. Viruses, 2018, 10, 31.	3.3	13
25	Comparison of Porcine Airway and Intestinal Epithelial Cell Lines for the Susceptibility and Expression of Pattern Recognition Receptors upon Influenza Virus Infection. Viruses, 2018, 10, 312.	3.3	14
26	Detailed mapping of the linear B Cell epitopes of the hemagglutinin (HA) protein of swine influenza virus. Virology, 2018, 522, 131-137.	2.4	9
27	Identification and characterization of viral defective RNA genomes in influenza B virus. Journal of General Virology, 2018, 99, 475-488.	2.9	13
28	The Hemagglutinin-Esterase Fusion Glycoprotein Is a Primary Determinant of the Exceptional Thermal and Acid Stability of Influenza D Virus. MSphere, 2017, 2, .	2.9	20
29	Visualization of IAV Genomes at the Single-Cell Level. Trends in Microbiology, 2017, 25, 781-782.	7.7	1
30	Influenza D Virus in Animal Species in Guangdong Province, Southern China. Emerging Infectious Diseases, 2017, 23, 1392-1396.	4.3	89
31	Comparative epidemiology of porcine circovirus type 3 in pigs with different clinical presentations. Virology Journal, 2017, 14, 222.	3.4	75
32	Identification of Goose-Origin Parvovirus as a Cause of Newly Emerging Beak Atrophy and Dwarfism Syndrome in Ducklings. Journal of Clinical Microbiology, 2016, 54, 1999-2007.	3.9	43
33	Occurrence and sequence analysis of porcine deltacoronaviruses in southern China. Virology Journal, 2016, 13, 136.	3.4	27
34	H9N2 avian influenza virus-derived natural reassortant H5N2 virus in swan containing the hemagglutinin segment from Eurasian H5 avian influenza virus with an in-frame deletion of four basic residues in the polybasic hemagglutinin cleavage site. Infection, Genetics and Evolution, 2016, 40, 17-20.	2.3	4
35	Molecular Evolution and Genetic Analysis of the Major Capsid Protein VP1 of Duck Hepatitis A Viruses: Implications for Antigenic Stability. PLoS ONE, 2015, 10, e0132982.	2.5	11
36	Pharmacological intervention of HIV-1 maturation. Acta Pharmaceutica Sinica B, 2015, 5, 493-499.	12.0	38

Dan Wang

#	Article	IF	CITATIONS
37	Replication and Transmission of the Novel Bovine Influenza D Virus in a Guinea Pig Model. Journal of Virology, 2015, 89, 11990-12001.	3.4	63
38	Characterization of a Novel Influenza Virus in Cattle and Swine: Proposal for a New Genus in the <i>Orthomyxoviridae</i> Family. MBio, 2014, 5, e00031-14.	4.1	278
39	Genomic and evolutionary characterization of a novel influenza-C-like virus from swine. Archives of Virology, 2014, 159, 249-255.	2.1	19
40	Detection of viral protein-protein interaction by microplate-format luminescence-based mammalian interactome mapping (LUMIER). Virologica Sinica, 2014, 29, 189-192.	3.0	3
41	Palmitoylation is required for intracellular trafficking of influenza B virus NB protein and efficient influenza B virus growth in vitro. Journal of General Virology, 2014, 95, 1211-1220.	2.9	15
42	Biochemical characterization of the small hydrophobic protein of avian metapneumovirus. Virus Research, 2012, 167, 297-301.	2.2	2
43	Phytochemicals Attenuating Aberrant Activation of β-Catenin in Cancer Cells. PLoS ONE, 2012, 7, e50508.	2.5	32
44	Nuclear localization of influenza B polymerase proteins and their binary complexes. Virus Research, 2011, 156, 49-53.	2.2	6
45	Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus. Virus Research, 2011, 160, 102-107.	2.2	2
46	Application of a split luciferase complementation assay for the detection of viral protein–protein interactions. Journal of Virological Methods, 2011, 176, 108-111.	2.1	23
47	A Single Polymorphism in HIV-1 Subtype C SP1 Is Sufficient To Confer Natural Resistance to the Maturation Inhibitor Bevirimat. Antimicrobial Agents and Chemotherapy, 2011, 55, 3324-3329.	3.2	42
48	The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system. Journal of General Virology, 2011, 92, 1205-1213.	2.9	6
49	The Lack of an Inherent Membrane Targeting Signal Is Responsible for the Failure of the Matrix (M1) Protein of Influenza A Virus To Bud into Virus-Like Particles. Journal of Virology, 2010, 84, 4673-4681.	3.4	73
50	Detection and Characterization of Influenza A Virus PA-PB2 Interaction through a Bimolecular Fluorescence Complementation Assay. Journal of Virology, 2009, 83, 3944-3955.	3.4	65
51	Bacterial Effector Binding to Ribosomal Protein S3 Subverts NF-κB Function. PLoS Pathogens, 2009, 5, e1000708.	4.7	144