Hozumi Motohashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5870383/publications.pdf Version: 2024-02-01

		38742	25787
107	19,022	50	108
papers	citations	h-index	g-index
113	113	113	22395
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chemical Biology of Reactive Sulfur Species: Hydrolysis-Driven Equilibrium of Polysulfides as a Determinant of Physiological Functions. Antioxidants and Redox Signaling, 2022, 36, 327-336.	5.4	30
2	NRF2 pathway activation attenuates ageing-related renal phenotypes due to α-klotho deficiency. Journal of Biochemistry, 2022, 171, 579-589.	1.7	13
3	CEBPB is required for NRF2-mediated drug resistance in NRF2-activated non-small cell lung cancer cells. Journal of Biochemistry, 2022, 171, 567-578.	1.7	13
4	Study Profile of the Tohoku Medical Megabank Community-Based Cohort Study. Journal of Epidemiology, 2021, 31, 65-76.	2.4	81
5	High-Precision Sulfur Metabolomics Innovated by a New Specific Probe for Trapping Reactive Sulfur Species. Antioxidants and Redox Signaling, 2021, 34, 1407-1419.	5.4	24
6	p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nature Communications, 2021, 12, 16.	12.8	137
7	Roles of CNC Transcription Factors NRF1 and NRF2 in Cancer. Cancers, 2021, 13, 541.	3.7	33
8	Comment on "Evidence that the ProPerDP method is inadequate for protein persulfidation detection due to lack of specificity― Science Advances, 2021, 7, .	10.3	3
9	Sulfide catabolism ameliorates hypoxic brain injury. Nature Communications, 2021, 12, 3108.	12.8	71
10	Skeletal muscle-specific Keap1 disruption modulates fatty acid utilization and enhances exercise capacity in female mice. Redox Biology, 2021, 43, 101966.	9.0	15
11	Feedback repression of PPARα signaling by Let-7 microRNA. Cell Reports, 2021, 36, 109506.	6.4	12
12	Methods in sulfide and persulfide research. Nitric Oxide - Biology and Chemistry, 2021, 116, 47-64.	2.7	22
13	The KEAP1-NRF2 System in Healthy Aging and Longevity. Antioxidants, 2021, 10, 1929.	5.1	44
14	From germ cells to neonates: the beginning of life and the KEAP1–NRF2 system. Journal of Biochemistry, 2020, 167, 133-138.	1.7	4
15	Cohort Profile: Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study (TMM) Tj ETQq1 1 0 2020, 49, 18-19m.	.784314 rg 1.9	gBT /Overloo 107
16	Enhancer remodeling promotes tumor-initiating activity in NRF2-activated non-small cell lung cancers. Nature Communications, 2020, 11, 5911.	12.8	60
17	Enzymatic Regulation and Biological Functions of Reactive Cysteine Persulfides and Polysulfides. Biomolecules, 2020, 10, 1245.	4.0	38
18	Nrf2 contributes to the weight gain of mice during space travel. Communications Biology, 2020, 3, 496.	4.4	27

#	Article	IF	CITATIONS
19	Activation of the NRF2 pathway in Keap1-knockdown mice attenuates progression of age-related hearing loss. Npj Aging and Mechanisms of Disease, 2020, 6, 14.	4.5	19
20	NRF2 pathway activation by KEAP1 inhibition attenuates the manifestation of aging phenotypes in salivary glands. Redox Biology, 2020, 36, 101603.	9.0	20
21	Microenvironmental Activation of Nrf2 Restricts the Progression of Nrf2-Activated Malignant Tumors. Cancer Research, 2020, 80, 3331-3344.	0.9	36
22	Metabolic features of cancer cells in NRF2 addiction status. Biophysical Reviews, 2020, 12, 435-441.	3.2	34
23	Impacts of NRF2 activation in non–smallâ€cell lung cancer cell lines on extracellular metabolites. Cancer Science, 2020, 111, 667-678.	3.9	29
24	Persulfide synthases that are functionally coupled with translation mediate sulfur respiration in mammalian cells. British Journal of Pharmacology, 2019, 176, 607-615.	5.4	38
25	Mitochondrial cysteinyl-tRNA synthetase is expressed via alternative transcriptional initiation regulated by energy metabolism in yeast cells. Journal of Biological Chemistry, 2019, 294, 13781-13788.	3.4	16
26	Nrf2 Suppresses Allergic Lung Inflammation by Attenuating the Type 2 Innate Lymphoid Cell Response. Journal of Immunology, 2019, 202, 1331-1339.	0.8	24
27	Sulfur-utilizing cytoprotection and energy metabolism. Current Opinion in Physiology, 2019, 9, 1-8.	1.8	8
28	Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nature Communications, 2019, 10, 1567.	12.8	143
29	Lactate dehydrogenase C is required for the protein expression of a sperm-specific isoform of lactate dehydrogenase A. Journal of Biochemistry, 2019, 165, 323-334.	1.7	15
30	Polysulfide stabilization by tyrosine and hydroxyphenyl-containing derivatives that is important for a reactive sulfur metabolomics analysis. Redox Biology, 2019, 21, 101096.	9.0	55
31	Nucleomethylin deficiency impairs embryonic erythropoiesis. Journal of Biochemistry, 2018, 163, 413-423.	1.7	8
32	Hyperactivation of Nrf2 leads to hypoplasia of bone in vivo. Genes To Cells, 2018, 23, 386-392.	1.2	28
33	PKM1 Confers Metabolic Advantages and Promotes Cell-Autonomous Tumor Cell Growth. Cancer Cell, 2018, 33, 355-367.e7.	16.8	121
34	NRF2 addiction in cancer cells. Cancer Science, 2018, 109, 900-911.	3.9	197
35	Tumors sweeten macrophages with acids. Nature Immunology, 2018, 19, 1281-1283.	14.5	24
36	Structural instability of lκB kinase β promotes autophagic degradation through enhancement of Keap1 binding. PLoS ONE, 2018, 13, e0203978.	2.5	4

#	Article	IF	CITATIONS
37	<i>O</i> -GlcNAcylation Signal Mediates Proteasome Inhibitor Resistance in Cancer Cells by Stabilizing NRF1. Molecular and Cellular Biology, 2018, 38, .	2.3	43
38	The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiological Reviews, 2018, 98, 1169-1203.	28.8	1,067
39	IL-11 contribution to tumorigenesis in an NRF2 addiction cancer model. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY21-4.	0.0	0
40	Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells. Free Radical Biology and Medicine, 2017, 109, 132-140.	2.9	26
41	Systemic Activation of NRF2 Alleviates Lethal Autoimmune Inflammation in Scurfy Mice. Molecular and Cellular Biology, 2017, 37, .	2.3	66
42	Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2. Journal of Biological Chemistry, 2017, 292, 7519-7530.	3.4	87
43	Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nature Communications, 2017, 8, 1177.	12.8	373
44	Low-Dose Irradiation Promotes Persistent Oxidative Stress and Decreases Self-Renewal in Hematopoietic Stem Cells. Cell Reports, 2017, 20, 3199-3211.	6.4	69
45	IL-11 contribution to tumorigenesis in an NRF2 addiction cancer model. Oncogene, 2017, 36, 6315-6324.	5.9	46
46	NRF2 Activation Impairs Quiescence and Bone Marrow Reconstitution Capacity of Hematopoietic Stem Cells. Molecular and Cellular Biology, 2017, 37, .	2.3	49
47	Redox signaling regulated by electrophiles and reactive sulfur species. Journal of Clinical Biochemistry and Nutrition, 2016, 58, 91-98.	1.4	41
48	CD271 regulates the proliferation and motility of hypopharyngeal cancer cells. Scientific Reports, 2016, 6, 30707.	3.3	28
49	Redox signaling regulated by an electrophilic cyclic nucleotide and reactive cysteine persulfides. Archives of Biochemistry and Biophysics, 2016, 595, 140-146.	3.0	18
50	Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nature Communications, 2016, 7, 11624.	12.8	1,238
51	The structural origin of metabolic quantitative diversity. Scientific Reports, 2016, 6, 31463.	3.3	18
52	NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea. Scientific Reports, 2016, 6, 19329.	3.3	91
53	Protein polysulfidation-dependent persulfide dioxygenase activity of ethylmalonic encephalopathy protein 1. Biochemical and Biophysical Research Communications, 2016, 480, 180-186.	2.1	39
54	p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nature Communications, 2016, 7, 12030.	12.8	253

#	Article	IF	CITATIONS
55	The Transcription Factor Bach2 Is Phosphorylated at Multiple Sites in Murine B Cells but a Single Site Prevents Its Nuclear Localization. Journal of Biological Chemistry, 2016, 291, 1826-1840.	3.4	29
56	The Mediator Subunit MED16 Transduces NRF2-Activating Signals into Antioxidant Gene Expression. Molecular and Cellular Biology, 2016, 36, 407-420.	2.3	64
57	Syndecan 4 Mediates Nrf2-dependent Expansion of Bronchiolar Progenitors That Protect Against Lung Inflammation. Molecular Therapy, 2016, 24, 41-52.	8.2	11
58	Redox-dependent Regulation of Gluconeogenesis by a Novel Mechanism Mediated by a Peroxidatic Cysteine of Peroxiredoxin. Scientific Reports, 2016, 6, 33536.	3.3	18
59	Establishment of Protocols for Global Metabolomics by LC-MS for Biomarker Discovery. PLoS ONE, 2016, 11, e0160555.	2.5	56
60	Activation of the NRF2 pathway and its impact on the prognosis of anaplastic glioma patients. Neuro-Oncology, 2015, 17, 555-565.	1.2	48
61	Alcohol dehydrogenase 3 contributes to the protection of liver from nonalcoholic steatohepatitis. Genes To Cells, 2015, 20, 464-480.	1.2	21
62	Histone deacetylase inhibitor restores surfactant protein-C expression in alveolar-epithelial type II cells and attenuates bleomycin-induced pulmonary fibrosis <i>in vivo</i> . Experimental Lung Research, 2015, 41, 422-434.	1.2	41
63	Roles of Nrf2 in cell proliferation and differentiation. Free Radical Biology and Medicine, 2015, 88, 168-178.	2.9	189
64	Whole-Body <i>In Vivo</i> Monitoring of Inflammatory Diseases Exploiting Human Interleukin 6-Luciferase Transgenic Mice. Molecular and Cellular Biology, 2015, 35, 3590-3601.	2.3	27
65	An integrative approach to analyze microarray datasets for prioritization of genes relevant to lens biology and disease. Genomics Data, 2015, 5, 223-227.	1.3	27
66	NF-E2-related factor 2 promotes compensatory liver hypertrophy after portal vein branch ligation in mice. Hepatology, 2014, 59, 2371-2382.	7.3	28
67	Hematopoietic Stem and Progenitor Cell Activation During Chronic Dermatitis Provoked by Constitutively Active Aryl-Hydrocarbon Receptor Driven by Keratin 14 Promoter. Toxicological Sciences, 2014, 138, 47-58.	3.1	4
68	Nrf2 Enhances Cholangiocyte Expansion in Pten-Deficient Livers. Molecular and Cellular Biology, 2014, 34, 900-913.	2.3	85
69	NRF2 immunolocalization in human breast cancer patients as a prognostic factor. Endocrine-Related Cancer, 2014, 21, 241-252.	3.1	55
70	Keap1â€Nrf2 system regulates cell fate determination of hematopoietic stem cells. Genes To Cells, 2014, 19, 239-253.	1.2	51
71	Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7606-7611.	7.1	757
72	Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy, 2014, 143, 52-66.	1.9	38

#	Article	IF	CITATIONS
73	Simultaneous Quantification of Sphingolipids in Small Quantities of Liver by LC-MS/MS. Mass Spectrometry, 2014, 3, S0046-S0046.	0.6	19
74	Phosphorylation of p62 Activates the Keap1-Nrf2 Pathway during Selective Autophagy. Molecular Cell, 2013, 51, 618-631.	9.7	880
75	Toward clinical application of the Keap1–Nrf2 pathway. Trends in Pharmacological Sciences, 2013, 34, 340-346.	8.7	564
76	Regulatory Nexus of Synthesis and Degradation Deciphers Cellular Nrf2 Expression Levels. Molecular and Cellular Biology, 2013, 33, 2402-2412.	2.3	101
77	NF-E2 p45 Is Important for Establishing Normal Function of Platelets. Molecular and Cellular Biology, 2013, 33, 2659-2670.	2.3	35
78	The Keap1–Nrf2 system in cancers: stress response and anabolic metabolism. Frontiers in Oncology, 2012, 2, 200.	2.8	305
79	Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13561-13566.	7.1	394
80	Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nature Chemical Biology, 2012, 8, 714-724.	8.0	274
81	Nrf2 Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming. Cancer Cell, 2012, 22, 66-79.	16.8	1,113
82	Accumulation of p62/ <scp>SQSTM</scp> 1 is associated with poor prognosis in patients with lung adenocarcinoma. Cancer Science, 2012, 103, 760-766.	3.9	177
83	The Keap1–Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide - Biology and Chemistry, 2011, 25, 153-160.	2.7	164
84	Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes To Cells, 2011, 16, 123-140.	1.2	1,215
85	Molecular Determinants for Small Maf Protein Control of Platelet Production. Molecular and Cellular Biology, 2011, 31, 151-162.	2.3	15
86	NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation. Blood, 2010, 115, 677-686.	1.4	84
87	The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology, 2010, 12, 213-223.	10.3	1,933
88	Genetic Analysis of Cytoprotective Functions Supported by Graded Expression of Keap1. Molecular and Cellular Biology, 2010, 30, 3016-3026.	2.3	198
89	Physiological Significance of Reactive Cysteine Residues of Keap1 in Determining Nrf2 Activity. Molecular and Cellular Biology, 2008, 28, 2758-2770.	2.3	441
90	Molecular Basis Distinguishing the DNA Binding Profile of Nrf2-Maf Heterodimer from That of Maf Homodimer. Journal of Biological Chemistry, 2007, 282, 33681-33690.	3.4	92

#	Article	IF	CITATIONS
91	Nrf2 Neh5 domain is differentially utilized in the transactivation of cytoprotective genes. Biochemical Journal, 2007, 404, 459-466.	3.7	87
92	Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochemical and Biophysical Research Communications, 2006, 339, 79-88.	2.1	356
93	Predictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elements. Genes To Cells, 2006, 11, 575-591.	1.2	69
94	MafG Sumoylation Is Required for Active Transcriptional Repression. Molecular and Cellular Biology, 2006, 26, 4652-4663.	2.3	49
95	Genetic Evidence that Small Maf Proteins Are Essential for the Activation of Antioxidant Response Element-Dependent Genes. Molecular and Cellular Biology, 2005, 25, 8044-8051.	2.3	250
96	Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6379-6384.	7.1	293
97	Evaluation of MafG interaction with Maf recognition element arrays by surface plasmon resonance imaging technique. Genes To Cells, 2004, 9, 153-164.	1.2	71
98	Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine, 2004, 10, 549-557.	6.7	1,529
99	Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nature Genetics, 2003, 35, 238-245.	21.4	782
100	Small Maf Compound Mutants Display Central Nervous System Neuronal Degeneration, Aberrant Transcription, and Bach Protein Mislocalization Coincident with Myoclonus and Abnormal Startle Response. Molecular and Cellular Biology, 2003, 23, 1163-1174.	2.3	46
101	Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene, 2002, 294, 1-12.	2.2	412
102	Perinatal synthetic lethality and hematopoietic defects in compound mafG::mafK mutant mice. EMBO Journal, 2000, 19, 1335-1345.	7.8	78
103	Positive or Negative MARE-Dependent Transcriptional Regulation Is Determined by the Abundance of Small Maf Proteins. Cell, 2000, 103, 865-876.	28.9	136
104	Characterization of the Murine mafF Gene. Journal of Biological Chemistry, 1999, 274, 21162-21169.	3.4	51
105	A core region of themafKgene INpromoter directs neuroneâ€specific transcriptionin vivo. Genes To Cells, 1998, 3, 671-684.	1.2	13
106	Impaired megakaryopoiesis and behavioral defects in <i>mafG</i> -null mutant mice. Genes and Development, 1998, 12, 2164-2174.	5.9	98
107	Mesodermal- vs. neuronal-specific expression of MafK is elicited by different promoters. Genes To Cells, 1996, 1, 223-238.	1.2	40