
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5868373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Ubiquitin in Regulating Stress Granule Dynamics. Frontiers in Physiology, 2022, 13, .	1.3	11
2	Protein quality control by the proteasome and autophagy: A regulatory role of ubiquitin and liquid-liquid phase separation. Matrix Biology, 2021, 100-101, 9-22.	1.5	14
3	Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease. PLoS Genetics, 2021, 17, e1009479.	1.5	11
4	Amyloid precursor protein elevates fusion of promyelocytic leukemia nuclear bodies in human hippocampal areas with high plaque load. Acta Neuropathologica Communications, 2021, 9, 66.	2.4	5
5	The key role of solvent in condensation: Mapping water in liquid-liquid phase-separated FUS. Biophysical Journal, 2021, 120, 1266-1275.	0.2	71
6	Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol. EMBO Journal, 2021, 40, e107913.	3.5	18
7	Remodeling of the Fibrillation Pathway of αâ€6ynuclein by Interaction with Antimicrobial Peptide LLâ€III. Chemistry - A European Journal, 2021, 27, 11845-11851.	1.7	12
8	The N-terminal domain of the prion protein is required and sufficient for liquid–liquid phase separation: A crucial role of the Aβ-binding domain. Journal of Biological Chemistry, 2021, 297, 100860.	1.6	19
9	Hypochlorous acid-modified human serum albumin suppresses MHC class II - dependent antigen presentation in pro-inflammatory macrophages. Redox Biology, 2021, 43, 101981.	3.9	13
10	Increased ROS-Dependent Fission of Mitochondria Causes Abnormal Morphology of the Cell Powerhouses in a Murine Model of Amyotrophic Lateral Sclerosis. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-16.	1.9	7
11	Mitochondria at the interface between neurodegeneration and neuroinflammation. Seminars in Cell and Developmental Biology, 2020, 99, 163-171.	2.3	74
12	Activation leads to a significant shift in the intracellular redox homeostasis of neutrophil-like cells. Redox Biology, 2020, 28, 101344.	3.9	15
13	SecY-mediated quality control prevents the translocation of non-gated porins. Scientific Reports, 2020, 10, 16347.	1.6	2
14	Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell, 2020, 180, 1067-1080.e16.	13.5	367
15	The <i>parkin-coregulated gene</i> product PACRG promotes TNF signaling by stabilizing LUBAC. Science Signaling, 2020, 13, .	1.6	16
16	PINK1 and Parkin: team players in stress-induced mitophagy. Biological Chemistry, 2020, 401, 891-899.	1.2	31
17	Synthesis of Indomorphan Pseudoâ€Natural Product Inhibitors of Glucose Transporters GLUTâ€1 and â€3. Angewandte Chemie - International Edition, 2019, 58, 17016-17025.	7.2	61
18	A new perspective on membrane-embedded Bax oligomers using DEER and bioresistant orthogonal spin labels. Scientific Reports, 2019, 9, 13013.	1.6	24

#	Article	IF	CITATIONS
19	α-Synuclein in Parkinson's disease: causal or bystander?. Journal of Neural Transmission, 2019, 126, 815-840.	1.4	88
20	A protein quality control pathway regulated by linear ubiquitination. EMBO Journal, 2019, 38, .	3.5	63
21	Linear Ubiquitin Chains: Cellular Functions and Strategies for Detection and Quantification. Frontiers in Chemistry, 2019, 7, 915.	1.8	70
22	Dimerization of the cellular prion protein inhibits propagation of scrapie prions. Journal of Biological Chemistry, 2018, 293, 8020-8031.	1.6	13
23	Increased ROS Level in Spinal Cord of Wobbler Mice due to Nmnat2 Downregulation. Molecular Neurobiology, 2018, 55, 8414-8424.	1.9	14
24	Alterations in the brain interactome of the intrinsically disordered N-terminal domain of the cellular prion protein (PrPC) in Alzheimer's disease. PLoS ONE, 2018, 13, e0197659.	1.1	20
25	Neutrophil-generated HOCl leads to non-specific thiol oxidation in phagocytized bacteria. ELife, 2018, 7, .	2.8	47
26	<scp>PERK</scp> activation mitigates tau pathology <i>inÂvitro</i> and <i>inÂvivo</i> . EMBO Molecular Medicine, 2017, 9, 371-384.	3.3	93
27	Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. Scientific Reports, 2017, 7, 42942.	1.6	68
28	Laquinimod treatment in the R6/2 mouse model. Scientific Reports, 2017, 7, 4947.	1.6	36
29	The Sec61/SecY complex is inherently deficient in translocating intrinsically disordered proteins. Journal of Biological Chemistry, 2017, 292, 21383-21396.	1.6	16
30	The mitochondrial kinase <scp>PINK</scp> 1: functions beyond mitophagy. Journal of Neurochemistry, 2016, 139, 232-239.	2.1	87
31	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
32	Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science, 2016, 351, 173-176.	6.0	336
33	Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration. Journal of Clinical Investigation, 2015, 125, 1873-1885.	3.9	67
34	Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants. EMBO Journal, 2014, 33, 341-355.	3.5	65
35	Parkin and mitochondrial quality control: toward assembling the puzzle. Trends in Cell Biology, 2014, 24, 332-341.	3.6	124
36	Inflammation-Induced Alteration of Astrocyte Mitochondrial Dynamics Requires Autophagy for Mitochondrial Network Maintenance. Cell Metabolism, 2013, 18, 844-859.	7.2	201

#	Article	IF	CITATIONS
37	TRAP1 rescues PINK1 loss-of-function phenotypes. Human Molecular Genetics, 2013, 22, 2829-2841.	1.4	81
38	The E3 Ligase Parkin Maintains Mitochondrial Integrity by Increasing Linear Ubiquitination of NEMO. Molecular Cell, 2013, 49, 908-921.	4.5	183
39	Structural features within the nascent chain regulate alternative targeting of secretory proteins to mitochondria. EMBO Journal, 2013, 32, 1036-1051.	3.5	34
40	The α-Helical Structure of Prodomains Promotes Translocation of Intrinsically Disordered Neuropeptide Hormones into the Endoplasmic Reticulum. Journal of Biological Chemistry, 2013, 288, 13961-13973.	1.6	14
41	Impaired complex IV activity in response to loss of LRPPRC function can be compensated by mitochondrial hyperfusion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2967-76.	3.3	63
42	The Mitochondrial Chaperone Protein TRAP1 Mitigates α-Synuclein Toxicity. PLoS Genetics, 2012, 8, e1002488.	1.5	120
43	The Heat Shock Response Is Modulated by and Interferes with Toxic Effects of Scrapie Prion Protein and Amyloid β. Journal of Biological Chemistry, 2012, 287, 43765-43776.	1.6	9
44	Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO Journal, 2012, 31, 3038-3062.	3.5	487
45	Cellular Prion Protein Mediates Toxic Signaling of Amyloid Beta. Neurodegenerative Diseases, 2012, 10, 298-300.	0.8	24
46	Pink1-deficiency in mice impairs gait, olfaction and serotonergic innervation of the olfactory bulb. Experimental Neurology, 2012, 235, 214-227.	2.0	64
47	Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathologica, 2012, 123, 173-188.	3.9	118
48	Neuroprotective and Neurotoxic Signaling by the Prion Protein. Topics in Current Chemistry, 2011, 305, 101-119.	4.0	31
49	The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO Journal, 2011, 30, 2057-2070.	3.5	209
50	Conserved Stress-protective Activity between Prion Protein and Shadoo. Journal of Biological Chemistry, 2011, 286, 8901-8908.	1.6	25
51	Synthesis of a CPI anchor module suitable for protein postâ€ŧranslational modification. Biopolymers, 2010, 94, 457-464.	1.2	12
52	Protein immobilization on liposomes and lipid oated nanoparticles by protein <i>trans</i> â€splicing. Journal of Peptide Science, 2010, 16, 582-588.	0.8	20
53	Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO Journal, 2010, 29, 3571-3589.	3.5	431
54	Parkin Is Protective against Proteotoxic Stress in a Transgenic Zebrafish Model. PLoS ONE, 2010, 5, e11783.	1.1	44

#	Article	IF	CITATIONS
55	Mitochondrial dysfunction in Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 29-44.	1.8	481
56	Targeting of the prion protein to the cytosol: mechanisms and consequences. Current Issues in Molecular Biology, 2010, 12, 109-18.	1.0	19
57	Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation. Journal of Biological Chemistry, 2009, 284, 22938-22951.	1.6	355
58	α-Helical Domains Promote Translocation of Intrinsically Disordered Polypeptides into the Endoplasmic Reticulum. Journal of Biological Chemistry, 2009, 284, 24384-24393.	1.6	22
59	Observing fibrillar assemblies on scrapie-infected cells. Pflugers Archiv European Journal of Physiology, 2008, 456, 83-93.	1.3	16
60	Stress-protective signalling of prion protein is corrupted by scrapie prions. EMBO Journal, 2008, 27, 1974-1984.	3.5	106
61	Green tea extracts interfere with the stressâ€protective activity of PrP ^C and the formation of PrP ^{Sc} . Journal of Neurochemistry, 2008, 107, 218-229.	2.1	64
62	The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO Journal, 2008, 27, 336-349.	3.5	333
63	Aberrant Folding of Pathogenic Parkin Mutants. Journal of Biological Chemistry, 2008, 283, 13771-13779.	1.6	44
64	Parkin Mediates Neuroprotection through Activation of IÂB Kinase/Nuclear Factor-ÂB Signaling. Journal of Neuroscience, 2007, 27, 1868-1878.	1.7	171
65	The parkin protein as a therapeutic target in Parkinson's disease. Expert Opinion on Therapeutic Targets, 2007, 11, 1543-1552.	1.5	26
66	Loss-of-Function of Human PINK1 Results in Mitochondrial Pathology and Can Be Rescued by Parkin. Journal of Neuroscience, 2007, 27, 12413-12418.	1.7	466
67	Semisynthetic Murine Prion Protein Equipped with a GPI Anchor Mimic Incorporates into Cellular Membranes. Chemistry and Biology, 2007, 14, 994-1006.	6.2	56
68	Structural Instability of the Prion Protein upon M205S/R Mutations Revealed by Molecular Dynamics Simulations. Biophysical Journal, 2006, 90, 3908-3918.	0.2	38
69	Prion protein-related proteins from zebrafish are complex glycosylated and contain a glycosylphosphatidylinositol anchor. Biochemical and Biophysical Research Communications, 2006, 341, 218-224.	1.0	29
70	Association of Bcl-2 with Misfolded Prion Protein Is Linked to the Toxic Potential of Cytosolic PrP. Molecular Biology of the Cell, 2006, 17, 3356-3368.	0.9	86
71	Pathogenic Mutations Located in the Hydrophobic Core of the Prion Protein Interfere with Folding and Attachment of the Glycosylphosphatidylinositol Anchor. Journal of Biological Chemistry, 2005, 280, 9320-9329.	1.6	41
72	Pathogenic mutations inactivate parkin by distinct mechanisms. Journal of Neurochemistry, 2005, 92, 114-122	2.1	98

#	Article	IF	CITATIONS
73	Systematic Identification of Antiprion Drugs by High-Throughput Screening Based on Scanning for Intensely Fluorescent Targets. Journal of Virology, 2005, 79, 7785-7791.	1.5	64
74	A Pathogenic PrP Mutation and Doppel Interfere with Polarized Sorting of the Prion Protein. Journal of Biological Chemistry, 2005, 280, 5137-5140.	1.6	35
75	The polysaccharide scaffold of PrP 27-30 is a common compound of natural prions and consists of α-linked polyglucose. Biological Chemistry, 2005, 386, 1149-55.	1.2	21
76	The C-terminal Globular Domain of the Prion Protein Is Necessary and Sufficient for Import into the Endoplasmic Reticulum. Journal of Biological Chemistry, 2004, 279, 5435-5443.	1.6	60
77	Folding and misfolding of the prion protein in the secretory pathway. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2004, 11, 162-172.	1.4	29
78	Misfolding of the Prion Protein at the Plasma Membrane Induces Endocytosis, Intracellular Retention and Degradation. Traffic, 2004, 5, 426-436.	1.3	47
79	Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO Journal, 2003, 22, 3613-3623.	3.5	118
80	Inhibition of Complex Glycosylation Increases the Formation of PrP ^{sc} . Traffic, 2003, 4, 313-322.	1.3	54
81	Post-translational Import of the Prion Protein into the Endoplasmic Reticulum Interferes with Cell Viability. Journal of Biological Chemistry, 2003, 278, 36139-36147.	1.6	41
82	Determinants of the in Vivo Folding of the Prion Protein. Journal of Biological Chemistry, 2003, 278, 14961-14970.	1.6	57
83	Inactivation of Parkin by Oxidative Stress and C-terminal Truncations. Journal of Biological Chemistry, 2003, 278, 47199-47208.	1.6	125
84	A sensitive filter retention assay for the detection of PrPScand the screening of anti-prion compounds. FEBS Letters, 2001, 503, 41-45.	1.3	32
85	Geldanamycin Restores a Defective Heat Shock Responsein Vivo. Journal of Biological Chemistry, 2001, 276, 45160-45167.	1.6	59