Rugang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5867612/publications.pdf Version: 2024-02-01

RUCANC ZHANC

#	Article	IF	CITATIONS
1	Chromatin basis of the senescence-associated secretory phenotype. Trends in Cell Biology, 2022, 32, 513-526.	7.9	29
2	Targeting cellular senescence to combat cancer and ageing. Molecular Oncology, 2022, 16, 3319-3332.	4.6	6
3	KDM5A Inhibits Antitumor Immune Responses Through Downregulation of the Antigen-Presentation Pathway in Ovarian Cancer. Cancer Immunology Research, 2022, 10, 1028-1038.	3.4	6
4	ADAR1 downregulation by autophagy drives senescence independently of RNA editing by enhancing p16INK4a levels. Nature Cell Biology, 2022, 24, 1202-1210.	10.3	19
5	ARID2 Deficiency Correlates with the Response to Immune Checkpoint Blockade in Melanoma. Journal of Investigative Dermatology, 2021, 141, 1564-1572.e4.	0.7	20
6	Sensitization of ovarian tumor to immune checkpoint blockade by boosting senescence-associated secretory phenotype. IScience, 2021, 24, 102016.	4.1	32
7	Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nature Cancer, 2021, 2, 189-200.	13.2	36
8	m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nature Cell Biology, 2021, 23, 355-365.	10.3	71
9	Targeting the IRE1α/XBP1 Endoplasmic Reticulum Stress Response Pathway in <i>ARID1A</i> -Mutant Ovarian Cancers. Cancer Research, 2021, 81, 5325-5335.	0.9	12
10	Targeting the IRE1α/XBP1s pathway suppresses CARM1-expressing ovarian cancer. Nature Communications, 2021, 12, 5321.	12.8	17
11	The SETDB1–TRIM28 Complex Suppresses Antitumor Immunity. Cancer Immunology Research, 2021, 9, 1413-1424.	3.4	24
12	NAMPT Inhibition Suppresses Cancer Stem-like Cells Associated with Therapy-Induced Senescence in Ovarian Cancer. Cancer Research, 2020, 80, 890-900.	0.9	83
13	CD38-expressing macrophages drive age-related NAD+ decline. Nature Metabolism, 2020, 2, 1186-1187.	11.9	7
14	Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Science Translational Medicine, 2020, 12, .	12.4	107
15	Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nature Communications, 2020, 11, 3726.	12.8	169
16	Targeting CARM1 in ovarian cancer with EZH2 and PARP inhibitors. Molecular and Cellular Oncology, 2020, 7, 1760675.	0.7	3
17	ARID1A mutation and genomic stability. Molecular and Cellular Oncology, 2020, 7, 1690923.	0.7	1
18	Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genetics, 2020, 16, e1008641.	3.5	78

#	Article	IF	CITATIONS
19	Topoisomerase 1 cleavage complex enables pattern recognition and inflammation during senescence. Nature Communications, 2020, 11, 908.	12.8	36
20	EZH2 Inhibition Sensitizes CARM1-High, Homologous Recombination Proficient Ovarian Cancers to PARP Inhibition. Cancer Cell, 2020, 37, 157-167.e6.	16.8	79
21	Selective targeting of different populations of myeloid-derived suppressor cells by histone deacetylase inhibitors. Cancer Immunology, Immunotherapy, 2020, 69, 1929-1936.	4.2	39
22	Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy. Journal of Clinical Investigation, 2020, 130, 2712-2726.	8.2	112
23	HDAC6 Inhibition Synergizes with Anti-PD-L1 Therapy in ARID1A-Inactivated Ovarian Cancer. Cancer Research, 2019, 79, 5482-5489.	0.9	86
24	ARID1A promotes genomic stability through protecting telomere cohesion. Nature Communications, 2019, 10, 4067.	12.8	40
25	ARID1A spatially partitions interphase chromosomes. Science Advances, 2019, 5, eaaw5294.	10.3	35
26	NAD ⁺ metabolism controls inflammation during senescence. Molecular and Cellular Oncology, 2019, 6, 1605819.	0.7	8
27	N6-Methylation of Adenosine of <i>FZD10</i> mRNA Contributes to PARP Inhibitor Resistance. Cancer Research, 2019, 79, 2812-2820.	0.9	127
28	NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nature Cell Biology, 2019, 21, 397-407.	10.3	232
29	Involvement of condensin in cellular senescence through gene regulation and compartmental reorganization. Nature Communications, 2019, 10, 5688.	12.8	42
30	CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nature Communications, 2018, 9, 631.	12.8	72
31	Repurposing Pan-HDAC Inhibitors for ARID1A-Mutated Ovarian Cancer. Cell Reports, 2018, 22, 3393-3400.	6.4	77
32	Mouse embryonic stem cells have increased capacity for replication fork restart driven by the specific Filia-Floped protein complex. Cell Research, 2018, 28, 69-89.	12.0	31
33	Epigenetic inhibitors for the precision treatment of ARID1A-mutant ovarian cancers: what are the next steps?. Expert Review of Precision Medicine and Drug Development, 2018, 3, 233-236.	0.7	3
34	Integrated Analysis of Genetic Ancestry and Genomic Alterations across Cancers. Cancer Cell, 2018, 34, 549-560.e9.	16.8	168
35	CLIC1 and CLIC4 complement CA125 as a diagnostic biomarker panel for all subtypes of epithelial ovarian cancer. Scientific Reports, 2018, 8, 14725.	3.3	35
36	SWI/SNF catalytic subunits' switch drives resistance to EZH2 inhibitors in ARID1A-mutated cells. Nature Communications, 2018, 9, 4116.	12.8	38

#	Article	IF	CITATIONS
37	The Tumor Suppressor ARID1A Controls Global Transcription via Pausing of RNA Polymerase II. Cell Reports, 2018, 23, 3933-3945.	6.4	83
38	SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Molecular Cancer Research, 2018, 16, 1819-1825.	3.4	32
39	Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Research, 2018, 78, 5694-5705.	0.9	9
40	SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells. Immunity, 2017, 46, 51-64.	14.3	122
41	Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in <i>BRCA</i> -Mutant Ovarian Cancer Models. Clinical Cancer Research, 2017, 23, 3097-3108.	7.0	223
42	ARID1A-mutated ovarian cancers depend on HDAC6Âactivity. Nature Cell Biology, 2017, 19, 962-973.	10.3	173
43	Detection of the Ubiquitinome in Cells Undergoing Oncogene-Induced Senescence. Methods in Molecular Biology, 2017, 1534, 127-137.	0.9	1
44	Tumor Cell–Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells. Cancer Discovery, 2017, 7, 72-85.	9.4	153
45	Harnessing mutual exclusivity between TP53 and ARID1 A mutations. Cell Cycle, 2017, 16, 2313-2314.	2.6	7
46	BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer. Cell Reports, 2017, 21, 3398-3405.	6.4	130
47	Epigenetic Basis of Cellular Senescence and Its Implications in Aging. Genes, 2017, 8, 343.	2.4	42
48	A patient-derived-xenograft platform to study BRCA-deficient ovarian cancers. JCI Insight, 2017, 2, e89760.	5.0	55
49	Arid1a controls tissue regeneration. Stem Cell Investigation, 2016, 3, 35-35.	3.0	2
50	The Primary Effect on the Proteome of ARID1A-mutated Ovarian Clear Cell Carcinoma is Downregulation of the Mevalonate Pathway at the Post-transcriptional Level. Molecular and Cellular Proteomics, 2016, 15, 3348-3360.	3.8	23
51	BET Bromodomain Inhibition Promotes Anti-tumor Immunity by Suppressing PD-L1 Expression. Cell Reports, 2016, 16, 2829-2837.	6.4	331
52	HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. Journal of Cell Biology, 2016, 215, 325-334.	5.2	132
53	BET Inhibitors Suppress ALDH Activity by Targeting <i>ALDH1A1</i> Super-Enhancer in Ovarian Cancer. Cancer Research, 2016, 76, 6320-6330.	0.9	115
54	Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma. Molecular Cancer Research, 2016, 14, 767-775.	3.4	27

#	Article	IF	CITATIONS
55	Epigenetic synthetic lethality in ovarian clear cell carcinoma: EZH2 and <i>ARID1A</i> mutations. Molecular and Cellular Oncology, 2016, 3, e1032476.	0.7	21
56	SPOP E3ÂUbiquitin Ligase Adaptor Promotes Cellular Senescence by Degrading the SENP7 deSUMOylase. Cell Reports, 2015, 13, 1183-1193.	6.4	55
57	Comprehensive analysis of the ubiquitinome during oncogene-induced senescence in human fibroblasts. Cell Cycle, 2015, 14, 1540-1547.	2.6	22
58	A novel role for the condensin II complex in cellular senescence. Cell Cycle, 2015, 14, 2160-2170.	2.6	18
59	ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence. Cell Reports, 2015, 11, 893-901.	6.4	94
60	Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nature Medicine, 2015, 21, 231-238.	30.7	530
61	Potential therapeutic targets in <i>ARID1A</i> -mutated cancers. Expert Opinion on Therapeutic Targets, 2015, 19, 1419-1422.	3.4	58
62	PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8638-8643.	7.1	174
63	Filia Is an ESC-Specific Regulator of DNA Damage Response and Safeguards Genomic Stability. Cell Stem Cell, 2015, 16, 684-698.	11.1	46
64	Telomeric repeat-containing RNA (TERRA) constitutes a nucleoprotein component of extracellular inflammatory exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6293-300.	7.1	76
65	Microbially Driven TLR5-Dependent Signaling Governs Distal Malignant Progression through Tumor-Promoting Inflammation. Cancer Cell, 2015, 27, 27-40.	16.8	242
66	Nucleotide metabolism, oncogene-induced senescence and cancer. Cancer Letters, 2015, 356, 204-210.	7.2	109
67	ATM in senescence. Oncotarget, 2015, 6, 14729-14730.	1.8	13
68	Identification of ribonucleotide reductase M2 as a potential target for pro-senescence therapy in epithelial ovarian cancer. Cell Cycle, 2014, 13, 199-207.	2.6	36
69	Metabolic alterations accompanying oncogene-induced senescence. Molecular and Cellular Oncology, 2014, 1, e963481.	0.7	26
70	Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer. Journal of Proteomics, 2013, 89, 165-178.	2.4	69
71	Suppression of Nucleotide Metabolism Underlies the Establishment and Maintenance of Oncogene-Induced Senescence. Cell Reports, 2013, 3, 1252-1265.	6.4	228
72	Identification of Multiple Novel Protein Biomarkers Shed by Human Serous Ovarian Tumors into the Blood of Immunocompromised Mice and Verified in Patient Sera. PLoS ONE, 2013, 8, e60129.	2.5	16

#	Article	IF	CITATIONS
73	Three-dimensional culture sensitizes epithelial ovarian cancer cells to EZH2 methyltransferase inhibition. Cell Cycle, 2013, 12, 2113-2119.	2.6	74
74	Chromatin remodeling, BRCA1, SAHF and cellular senescence. Cell Cycle, 2013, 12, 1653-1654.	2.6	12
75	BRG1 Is Required for Formation of Senescence-Associated Heterochromatin Foci Induced by Oncogenic RAS or BRCA1 Loss. Molecular and Cellular Biology, 2013, 33, 1819-1829.	2.3	46
76	Role of EZH2 in Epithelial Ovarian Cancer: From Biological Insights to Therapeutic Target. Frontiers in Oncology, 2013, 3, 47.	2.8	24
77	EZH2 knockdown suppresses the growth and invasion of human inflammatory breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2013, 32, 70.	8.6	38
78	RAS, cellular senescence and transformation. Small GTPases, 2012, 3, 163-167.	1.6	7
79	SUZ12 Promotes Human Epithelial Ovarian Cancer by Suppressing Apoptosis via Silencing HRK. Molecular Cancer Research, 2012, 10, 1462-1472.	3.4	66
80	Oncogenic Ras Regulates BRIP1 Expression to Induce Dissociation of BRCA1 from Chromatin, Inhibit DNA Repair, and Promote Senescence. Developmental Cell, 2011, 21, 1077-1091.	7.0	82
81	Wnt5a Suppresses Epithelial Ovarian Cancer by Promoting Cellular Senescence. Cancer Research, 2011, 71, 6184-6194.	0.9	88
82	Activation of the PIK3CA/AKT Pathway Suppresses Senescence Induced by an Activated RAS Oncogene to Promote Tumorigenesis. Molecular Cell, 2011, 42, 36-49.	9.7	179
83	Enhancer of Zeste Homolog 2 Promotes the Proliferation and Invasion of Epithelial Ovarian Cancer Cells. Molecular Cancer Research, 2010, 8, 1610-1618.	3.4	109
84	Molecular Dissection of Formation of Senescence-Associated Heterochromatin Foci. Molecular and Cellular Biology, 2007, 27, 2343-2358.	2.3	361
85	Definition of pRB- and p53-Dependent and -Independent Steps in HIRA/ASF1a-Mediated Formation of Senescence-Associated Heterochromatin Foci. Molecular and Cellular Biology, 2007, 27, 2452-2465.	2.3	145
86	Downregulation of Wnt Signaling Is a Trigger for Formation of Facultative Heterochromatin and Onset of Cell Senescence in Primary Human Cells. Molecular Cell, 2007, 27, 183-196.	9.7	203
87	Formation of MacroH2A-Containing Senescence-Associated Heterochromatin Foci and Senescence Driven by ASF1a and HIRA. Developmental Cell, 2005, 8, 19-30.	7.0	609