Robert H Vonderheide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5866535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Feasibility and utility of synthetic control arms derived from real-world data to support clinical development Journal of Clinical Oncology, 2022, 40, 528-528.	1.6	3
2	<i>PTEN</i> Loss and <i>BRCA1</i> Promoter Hypermethylation Negatively Predict for Immunogenicity in BRCA-Deficient Ovarian Cancer. JCO Precision Oncology, 2022, 6, e2100159.	3.0	4
3	Systematic illumination of druggable genes in cancer genomes. Cell Reports, 2022, 38, 110400.	6.4	14
4	Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nature Medicine, 2022, 28, 1167-1177.	30.7	112
5	Epigenetic and Transcriptional Control of the Epidermal Growth Factor Receptor Regulates the Tumor Immune Microenvironment in Pancreatic Cancer. Cancer Discovery, 2021, 11, 736-753.	9.4	73
6	A Pilot Study of Galunisertib plus Stereotactic Body Radiotherapy in Patients with Advanced Hepatocellular Carcinoma. Molecular Cancer Therapeutics, 2021, 20, 389-397.	4.1	7
7	CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncology, The, 2021, 22, 118-131.	10.7	177
8	Rates of COVID-19–Related Outcomes in Cancer Compared With Noncancer Patients. JNCI Cancer Spectrum, 2021, 5, pkaa120.	2.9	26
9	Reconsidering Dexamethasone for Antiemesis when Combining Chemotherapy and Immunotherapy. Oncologist, 2021, 26, 269-273.	3.7	22
10	Leukocyte Heterogeneity in Pancreatic Ductal Adenocarcinoma: Phenotypic and Spatial Features Associated with Clinical Outcome. Cancer Discovery, 2021, 11, 2014-2031.	9.4	79
11	Alternatives to Perpetual Chemotherapy for Metastatic Pancreatic Cancer. Clinical Cancer Research, 2021, 27, 3540-3542.	7.0	4
12	Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40. Nature Communications, 2021, 12, 3424.	12.8	74
13	SARS-CoV-2 Seropositivity and Seroconversion in Patients Undergoing Active Cancer-Directed Therapy. JCO Oncology Practice, 2021, 17, e1879-e1886.	2.9	2
14	Site-Dependent Immune Escape Due to Impaired Dendritic Cell Cross-Priming. Cancer Immunology Research, 2021, 9, 877-890.	3.4	14
15	Neoadjuvant Selicrelumab, an Agonist CD40 Antibody, Induces Changes in the Tumor Microenvironment in Patients with Resectable Pancreatic Cancer. Clinical Cancer Research, 2021, 27, 4574-4586.	7.0	82
16	Phase 1 study of safety, tolerability and immunogenicity of the human telomerase (hTERT)-encoded DNA plasmids INO-1400 and INO-1401 with or without IL-12 DNA plasmid INO-9012 in adult patients with solid tumors. , 2021, 9, e003019.		20
17	Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nature Communications, 2021, 12, 4365.	12.8	53
18	Abstract CT005: T cell inflammation in the tumor microenvironment after agonist CD40 antibody: Clinical and translational results of a neoadjuvant clinical trial. , 2021, , .		0

#	Article	IF	CITATIONS
19	Phase II Study of Maintenance Rucaparib in Patients With Platinum-Sensitive Advanced Pancreatic Cancer and a Pathogenic Germline or Somatic Variant in <i>BRCA1</i> , <i>BRCA2</i> , or <i>PALB2</i> . Journal of Clinical Oncology, 2021, 39, 2497-2505.	1.6	113
20	Vitamin D deficiency after allogeneic hematopoietic cell transplantation promotes T-cell activation and is inversely associated with an EZH2-ID3 signature. Transplantation and Cellular Therapy, 2021, 28, 18.e1-18.e1.	1.2	4
21	A stratified phase I dose escalation trial of hypofractionated radiotherapy followed by ipilimumab in metastatic melanoma: long-term follow-up and final outcomes. OncoImmunology, 2021, 10, 1863631.	4.6	16
22	The Cancer Surfaceome Atlas integrates genomic, functional and drug response data to identify actionable targets. Nature Cancer, 2021, 2, 1406-1422.	13.2	33
23	Right to Try Requests and Oncologists' Gatekeeping Obligations. Journal of Clinical Oncology, 2020, 38, 111-114.	1.6	7
24	CD40 Agonist Antibodies in Cancer Immunotherapy. Annual Review of Medicine, 2020, 71, 47-58.	12.2	327
25	Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 2020, 38, 788-802.	16.8	273
26	Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. Journal of Experimental Medicine, 2020, 217, .	8.5	113
27	Tumor-Derived Myeloid Cell Chemoattractants and T Cell Exclusion in Pancreatic Cancer. Frontiers in Immunology, 2020, 11, 605619.	4.8	23
28	Combining Radiation with Immunotherapy: The University of Pennsylvania Experience. Seminars in Radiation Oncology, 2020, 30, 173-180.	2.2	6
29	Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8022-8031.	7.1	84
30	Evaluation of Cyclophosphamide/GVAX Pancreas Followed by Listeria-Mesothelin (CRS-207) with or without Nivolumab in Patients with Pancreatic Cancer. Clinical Cancer Research, 2020, 26, 3578-3588.	7.0	76
31	CCL5 mediates CD40-driven CD4+ T cell tumor infiltration and immunity. JCI Insight, 2020, 5, .	5.0	72
32	Neoantigen Dissimilarity to the Self-Proteome Predicts Immunogenicity and Response to Immune Checkpoint Blockade. Cell Systems, 2019, 9, 375-382.e4.	6.2	88
33	Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of PMN-MDSCs. Journal of Experimental Medicine, 2019, 216, 2150-2169.	8.5	85
34	Fatty acid transport proteinÂ2 reprograms neutrophils in cancer. Nature, 2019, 569, 73-78.	27.8	440
35	Genomic Signatures Predict the Immunogenicity of BRCA-Deficient Breast Cancer. Clinical Cancer Research, 2019, 25, 4363-4374.	7.0	60
36	Extended CCR5 Blockade for Graft-versus-Host Disease Prophylaxis Improves Outcomes of Reduced-Intensity Unrelated Donor Hematopoietic Cell Transplantation: A Phase II Clinical Trial. Biology of Blood and Marrow Transplantation, 2019, 25, 515-521.	2.0	24

#	Article	IF	CITATIONS
37	Abstract CT004: A Phase lb study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients. , 2019, , .		44
38	Abstract B31: Type 1 conventional dendritic cells are progressively and systemically dysregulated early in pancreatic carcinogenesis. , 2019, , .		1
39	Tumor cell–intrinsic EPHA2 suppresses antitumor immunity by regulating PTGS2 (COX-2). Journal of Clinical Investigation, 2019, 129, 3594-3609.	8.2	115
40	Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 2018, 24, 541-550.	30.7	3,421
41	The Immune Revolution: A Case for Priming, Not Checkpoint. Cancer Cell, 2018, 33, 563-569.	16.8	240
42	Tumor Immunity and Survival as a Function of Alternative Neopeptides in Human Cancer. Cancer Immunology Research, 2018, 6, 276-287.	3.4	69
43	Immunotherapy and Prevention of Pancreatic Cancer. Trends in Cancer, 2018, 4, 418-428.	7.4	296
44	Pharmacodynamic Monitoring Predicts Outcomes of CCR5 Blockade as Graft-versus-Host Disease Prophylaxis. Biology of Blood and Marrow Transplantation, 2018, 24, 594-599.	2.0	6
45	Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. Oncolmmunology, 2018, 7, e1468956.	4.6	88
46	A phase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. British Journal of Cancer, 2018, 119, 1200-1207.	6.4	83
47	Unique pattern of neutrophil migration and function during tumor progression. Nature Immunology, 2018, 19, 1236-1247.	14.5	140
48	Radiotherapy and CD40 Activation Separately Augment Immunity to Checkpoint Blockade in Cancer. Cancer Research, 2018, 78, 4282-4291.	0.9	83
49	Tumor Cell-Intrinsic Factors Underlie Heterogeneity of Immune Cell Infiltration and Response to Immunotherapy. Immunity, 2018, 49, 178-193.e7.	14.3	502
50	Hif1α Deletion Limits Tissue Regeneration via Aberrant B Cell Accumulation in Experimental Pancreatitis. Cell Reports, 2018, 23, 3457-3464.	6.4	8
51	Class I-restricted T-cell responses to a polymorphic peptide in a gene therapy clinical trial for α-1-antitrypsin deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1655-1659.	7.1	52
52	Clinical and immunologic impact of CCR5 blockade in graft-versus-host disease prophylaxis. Blood, 2017, 129, 906-916.	1.4	56
53	T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature, 2017, 545, 60-65.	27.8	1,280
54	Immunotherapy for Breast Cancer: What Are We Missing?. Clinical Cancer Research, 2017, 23, 2640-2646.	7.0	176

#	Article	IF	CITATIONS
55	Immune Cytolytic Activity Stratifies Molecular Subsets of Human Pancreatic Cancer. Clinical Cancer Research, 2017, 23, 3129-3138.	7.0	191
56	Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell, 2017, 32, 654-668.e5.	16.8	457
57	Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer. Cancer Immunology Research, 2017, 5, 1152-1161.	3.4	309
58	Lack of immunoediting in murine pancreatic cancer reversed with neoantigen. JCl Insight, 2016, 1, .	5.0	127
59	Infusion of CD3/CD28 costimulated umbilical cord blood T cells at the time of single umbilical cord blood transplantation may enhance engraftment. American Journal of Hematology, 2016, 91, 453-460.	4.1	7
60	Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell, 2016, 167, 1540-1554.e12.	28.9	830
61	De-Risking Immunotherapy: Report of a Consensus Workshop of the Cancer Immunotherapy Consortium of the Cancer Research Institute. Cancer Immunology Research, 2016, 4, 279-288.	3.4	29
62	CSF-1R–Dependent Lethal Hepatotoxicity When Agonistic CD40 Antibody Is Given before but Not after Chemotherapy. Journal of Immunology, 2016, 197, 179-187.	0.8	48
63	Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nature Communications, 2016, 7, 12150.	12.8	2,076
64	CXCR2-Dependent Accumulation of Tumor-Associated Neutrophils Regulates T-cell Immunity in Pancreatic Ductal Adenocarcinoma. Cancer Immunology Research, 2016, 4, 968-982.	3.4	192
65	Metastatic progression is associated with dynamic changes in the local microenvironment. Nature Communications, 2016, 7, 12819.	12.8	99
66	CD40 Stimulation Obviates Innate Sensors and Drives T Cell Immunity in Cancer. Cell Reports, 2016, 15, 2719-2732.	6.4	217
67	<i>Hif1a</i> Deletion Reveals Pro-Neoplastic Function of B Cells in Pancreatic Neoplasia. Cancer Discovery, 2016, 6, 256-269.	9.4	187
68	NKG2D expression by CD8+ T cells contributes to GVHD and GVT effects in a murine model of allogeneic HSCT. Blood, 2015, 125, 3655-3663.	1.4	40
69	Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells. Cancer Research, 2015, 75, 2800-2810.	0.9	375
70	High Graft CD8 Cell Dose Predicts Improved Survival and Enables Better Donor Selection in Allogeneic Stem-Cell Transplantation With Reduced-Intensity Conditioning. Journal of Clinical Oncology, 2015, 33, 2392-2398.	1.6	52
71	Special Conference on Tumor Immunology and Immunotherapy: A New Chapter. Cancer Immunology Research, 2015, 3, 590-597.	3.4	14
72	Exclusion of T Cells From Pancreatic Carcinomas in Mice Is Regulated by Ly6Clow F4/80+ Extratumoral Macrophages. Gastroenterology, 2015, 149, 201-210.	1.3	233

Robert H Vonderheide

#	Article	IF	CITATIONS
73	Induction of T-cell Immunity Overcomes Complete Resistance to PD-1 and CTLA-4 Blockade and Improves Survival in Pancreatic Carcinoma. Cancer Immunology Research, 2015, 3, 399-411.	3.4	387
74	Awakening the immune system with radiation: Optimal dose and fractionation. Cancer Letters, 2015, 368, 185-190.	7.2	91
75	Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature, 2015, 520, 373-377.	27.8	1,955
76	CD47 blockade as another immune checkpoint therapy for cancer. Nature Medicine, 2015, 21, 1122-1123.	30.7	96
77	Lack of a significant pharmacokinetic interaction between maraviroc and tacrolimus in allogeneic HSCT recipients. Journal of Antimicrobial Chemotherapy, 2015, 70, 2078-2083.	3.0	4
78	Immune Activation and a 9-Year Ongoing Complete Remission Following CD40 Antibody Therapy and Metastasectomy in a Patient with Metastatic Melanoma. Cancer Immunology Research, 2014, 2, 1051-1058.	3.4	74
79	Role of Crosslinking for Agonistic CD40 Monoclonal Antibodies as Immune Therapy of Cancer. Cancer Immunology Research, 2014, 2, 19-26.	3.4	77
80	Engineering T cells for cancer: our synthetic future. Immunological Reviews, 2014, 257, 7-13.	6.0	43
81	Mitigating the toxic effects of anticancer immunotherapy. Nature Reviews Clinical Oncology, 2014, 11, 91-99.	27.6	189
82	Tumor-Promoting Inflammatory Networks in Pancreatic Neoplasia: Another Reason to Loathe Kras. Cancer Cell, 2014, 25, 553-554.	16.8	15
83	Abstract IA12: Oncogenic KRAS and the inflammatory microenvironment in pancreatic cancer. , 2014, , .		1
84	CD40 immunotherapy for pancreatic cancer. Cancer Immunology, Immunotherapy, 2013, 62, 949-954.	4.2	95
85	Immunotherapy at Large: The road to personalized cancer vaccines. Nature Medicine, 2013, 19, 1098-1100.	30.7	50
86	Inflammatory networks and immune surveillance of pancreatic carcinoma. Current Opinion in Immunology, 2013, 25, 200-205.	5.5	173
87	Agonistic CD40 Antibodies and Cancer Therapy. Clinical Cancer Research, 2013, 19, 1035-1043.	7.0	352
88	Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncolmmunology, 2013, 2, e23033.	4.6	160
89	A Phase I Study of an Agonist CD40 Monoclonal Antibody (CP-870,893) in Combination with Gemcitabine in Patients with Advanced Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2013, 19, 6286-6295.	7.0	382
90	CD25 Blockade Depletes and Selectively Reprograms Regulatory T Cells in Concert with Immunotherapy in Cancer Patients. Science Translational Medicine, 2012, 4, 134ra62.	12.4	264

Robert H Vonderheide

#	Article	IF	CITATIONS
91	EMT and Dissemination Precede Pancreatic Tumor Formation. Cell, 2012, 148, 349-361.	28.9	1,746
92	Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor Regulates Myeloid Inflammation and T Cell Immunity in Pancreatic Cancer. Cancer Cell, 2012, 21, 822-835.	16.8	809
93	CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans. Science, 2011, 331, 1612-1616.	12.6	1,407
94	Tremelimumab in Combination with Exemestane in Patients with Advanced Breast Cancer and Treatment-Associated Modulation of Inducible Costimulator Expression on Patient T Cells. Clinical Cancer Research, 2010, 16, 3485-3494.	7.0	265
95	Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. Cancer Biology and Therapy, 2010, 10, 983-993.	3.4	135
96	Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation. Journal of Translational Medicine, 2009, 7, 93.	4.4	60
97	Prospects and challenges of building a cancer vaccine targeting telomerase. Biochimie, 2008, 90, 173-180.	2.6	50
98	Telomerase-Specific T-Cell Immunity in Breast Cancer: Effect of Vaccination on Tumor Immunosurveillance. Cancer Research, 2007, 67, 10546-10555.	0.9	89
99	Clinical Activity and Immune Modulation in Cancer Patients Treated With CP-870,893, a Novel CD40 Agonist Monoclonal Antibody. Journal of Clinical Oncology, 2007, 25, 876-883.	1.6	458
100	Prospect of Targeting the CD40 Pathway for Cancer Therapy. Clinical Cancer Research, 2007, 13, 1083-1088.	7.0	156
101	Dynamics of the Immune Reaction to Pancreatic Cancer from Inception to Invasion. Cancer Research, 2007, 67, 9518-9527.	0.9	838
102	Universal tumor antigens for cancer vaccination: targeting telomerase for immunoprevention. Discovery Medicine, 2007, 7, 103-8.	0.5	15
103	Vaccination of Cancer Patients Against Telomerase Induces Functional Antitumor CD8+ T Lymphocytes. Clinical Cancer Research, 2004, 10, 828-839.	7.0	233
104	RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy. Blood, 2004, 103, 2046-2054.	1.4	133
105	A Translational Bridge to Cancer Immunotherapy: Exploiting Costimulation and Target Antigens for Active and Passive T Cell Immunotherapy. Immunologic Research, 2003, 27, 341-356.	2.9	27
106	Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene, 2002, 21, 674-679.	5.9	140
107	Phase I Study of Recombinant Human CD40 Ligand in Cancer Patients. Journal of Clinical Oncology, 2001, 19, 3280-3287.	1.6	209
108	Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nature Medicine, 2000, 6, 667-672.	30.7	163

1

#	Article	IF	CITATIONS
109	The Telomerase Catalytic Subunit Is a Widely Expressed Tumor-Associated Antigen Recognized by Cytotoxic T Lymphocytes. Immunity, 1999, 10, 673-679.	14.3	528

110 Telomerase as a universal tumor-associated antigen for cancer immunotherapy. , 0, .