William Dowhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5866264/publications.pdf Version: 2024-02-01

		18482	27406
137	11,923	62	106
papers	citations	h-index	g-index
137	137	137	8590
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Frontiers in Molecular Biosciences, 2021, 8, 666203.	3.5	10
2	Functional roles of lipids in biological membranes. , 2021, , 1-51.		1
3	Structural and Functional Adaptability of Sucrose and Lactose Permeases from <i>Escherichia coli</i> to the Membrane Lipid Composition. Biochemistry, 2020, 59, 1854-1868.	2.5	3
4	Cardiolipin is required in vivo for the stability of bacterial translocon and optimal membrane protein translocation and insertion. Scientific Reports, 2020, 10, 6296.	3.3	30
5	Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Science Advances, 2020, 6, eaaz6333.	10.3	81
6	Cardiolipin Synthesis in Skeletal Muscle Is Rhythmic and Modifiable by Age and Diet. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	4.0	16
7	Importance of phosphorylation/dephosphorylation cycles on lipid-dependent modulation of membrane protein topology by posttranslational phosphorylation. Journal of Biological Chemistry, 2019, 294, 18853-18862.	3.4	9
8	Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nature Communications, 2019, 10, 3923.	12.8	123
9	The lipid-dependent structure and function of LacY can be recapitulated and analyzed in phospholipid-containing detergent micelles. Scientific Reports, 2019, 9, 11338.	3.3	7
10	Functional Roles of Individual Membrane Phospholipids in Escherichia coli and Saccharomyces cerevisiae. , 2019, , 553-574.		0
11	Lipid-Assisted Membrane Protein Folding and Topogenesis. Protein Journal, 2019, 38, 274-288.	1.6	50
12	Flip-Flopping Membrane Proteins: How the Charge Balance Rule Governs Dynamic Membrane Protein Topology. , 2019, , 609-636.		0
13	Structural and functional characterization of protein–lipid interactions of the Salmonella typhimurium melibiose transporter MelB. BMC Biology, 2018, 16, 85.	3.8	30
14	Flip-Flopping Membrane Proteins: How the Charge Balance Rule Governs Dynamic Membrane Protein Topology. , 2018, , 1-28.		3
15	Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nature Communications, 2017, 8, 14108.	12.8	81
16	Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation. Journal of Biological Chemistry, 2017, 292, 1613-1624.	3.4	29
17	Understanding phospholipid function: Why are there so many lipids?. Journal of Biological Chemistry, 2017, 292, 10755-10766.	3.4	53
18	Impact of Membrane Phospholipid Alterations in Escherichia coli on Cellular Function and Bacterial Stress Adaptation. Journal of Bacteriology, 2017, 199, .	2.2	179

#	Article	IF	CITATIONS
19	Effects of mixed proximal and distal topogenic signals on the topological sensitivity of a membrane protein to the lipid environment. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1291-1300.	2.6	7
20	Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease. Scientific Reports, 2017, 7, 15281.	3.3	47
21	Functional Roles of Individual Membrane Phospholipids in Escherichia coli and Saccharomyces cerevisiae. , 2017, , 1-22.		3
22	Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nature Communications, 2016, 7, 12086.	12.8	163
23	Functional Roles of Lipids in Membranes. , 2016, , 1-40.		8
24	Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity. Blood, 2015, 125, 1643-1652.	1.4	44
25	Dynamic membrane protein topological switching upon changes in phospholipid environment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13874-13879.	7.1	75
26	Biosynthetic preparation of selectively deuterated phosphatidylcholine in genetically modified Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 241-254.	3.6	31
27	May the Force Be With You: Unfolding Lipid-Protein Interactions By Single-Molecule Force Spectroscopy. Structure, 2015, 23, 612-614.	3.3	4
28	Role of Cardiolipin in Mitochondrial Supercomplex Assembly. , 2015, , 81-106.		3
29	N-acylated Peptides Derived from Human Lactoferricin Perturb Organization of Cardiolipin and Phosphatidylethanolamine in Cell Membranes and Induce Defects in Escherichia coli Cell Division. PLoS ONE, 2014, 9, e90228.	2.5	35
30	Lipids and topological rules governing membrane protein assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1475-1488.	4.1	113
31	Cardiolipin Is Dispensable for Oxidative Phosphorylation and Non-fermentative Growth of Alkaliphilic Bacillus pseudofirmus OF4. Journal of Biological Chemistry, 2014, 289, 2960-2971.	3.4	12
32	Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chemistry and Physics of Lipids, 2014, 179, 42-48.	3.2	208
33	Lipids and Extracellular Materials. Annual Review of Biochemistry, 2014, 83, 45-49.	11.1	8
34	Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. Journal of Clinical Investigation, 2014, 124, 2750-2761.	8.2	112
35	Elevated Adenosine Signaling Via Adenosine A2B Receptor Induces Normal and Sickle Erythrocyte Sphingosine Kinase 1 Activity. Blood, 2014, 124, 4067-4067.	1.4	1
36	Cardiolipin-dependent Reconstitution of Respiratory Supercomplexes from Purified Saccharomyces cerevisiae Complexes III and IV. Journal of Biological Chemistry, 2013, 288, 401-411.	3.4	124

#	Article	IF	CITATIONS
37	A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 471-494.	2.4	90
38	Christian Raetz: Scientist and Friend Extraordinaire. Annual Review of Biochemistry, 2013, 82, 1-24.	11.1	9
39	Daptomycin-Resistant Enterococcus faecalis Diverts the Antibiotic Molecule from the Division Septum and Remodels Cell Membrane Phospholipids. MBio, 2013, 4, .	4.1	152
40	In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9338-9343.	7.1	87
41	Proper Fatty Acid Composition Rather than an Ionizable Lipid Amine Is Required for Full Transport Function of Lactose Permease from Escherichia coli. Journal of Biological Chemistry, 2013, 288, 5873-5885.	3.4	29
42	The Raetz Pathway for Lipid A Biosynthesis:Christian Rudolf Hubert Raetz, M.D., Ph.D. 1946-2011. Glycobiology, 2012, 22, 3-6.	2.5	1
43	Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16504-16509.	7.1	195
44	Lipid-dependent Generation of Dual Topology for a Membrane Protein. Journal of Biological Chemistry, 2012, 287, 37939-37948.	3.4	58
45	Arrangement of the Respiratory Chain Complexes in Saccharomyces cerevisiae Supercomplex III2IV2 Revealed by Single Particle Cryo-Electron Microscopy. Journal of Biological Chemistry, 2012, 287, 23095-23103.	3.4	112
46	Molecular genetic and biochemical approaches for defining lipid-dependent membrane protein folding. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1097-1107.	2.6	31
47	Mitochondrial Phosphatase PTPMT1 Is Essential for Cardiolipin Biosynthesis. Cell Metabolism, 2011, 13, 690-700.	16.2	176
48	Modulation of Myocardial Mitochondrial Mechanisms during Severe Polymicrobial Sepsis in the Rat. PLoS ONE, 2011, 6, e21285.	2.5	32
49	The Raetz Pathway for Lipid A Biosynthesis: Christian Rudolf Hubert Raetz, MD PhD, 1946–2011. Journal of Lipid Research, 2011, 52, 1857-1860.	4.2	9
50	Lipids and Topological Rules of Membrane Protein Assembly. Journal of Biological Chemistry, 2011, 286, 15182-15194.	3.4	39
51	Lipid–protein interactions as determinants of membrane protein structure and function. Biochemical Society Transactions, 2011, 39, 767-774.	3.4	73
52	Chris Raetz, scientist and enduring friend. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17255-17256.	7.1	6
53	Lipid-Assisted Membrane Protein Folding and Topogenesis. , 2011, , 177-201.		0
54	Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15057-15062.	7.1	91

#	Article	IF	CITATIONS
55	Influence of K+-dependent membrane lipid composition on the expression of the kdpFABC operon in Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 32-39.	2.6	9
56	Study of Polytopic Membrane Protein Topological Organization as a Function of Membrane Lipid Composition. Methods in Molecular Biology, 2010, 619, 79-101.	0.9	31
57	Lipid-Protein Interactions Drive Membrane Protein Topogenesis in Accordance with the Positive Inside Rule. Journal of Biological Chemistry, 2009, 284, 9637-9641.	3.4	67
58	Adenine Nucleotide-dependent Regulation of Assembly of Bacterial Tubulin-like FtsZ by a Hypermorph of Bacterial Actin-like FtsA*. Journal of Biological Chemistry, 2009, 284, 14079-14086.	3.4	53
59	Phosphatidic Acid and N-Acylphosphatidylethanolamine Form Membrane Domains in Escherichia coli Mutant Lacking Cardiolipin and Phosphatidylglycerol. Journal of Biological Chemistry, 2009, 284, 2990-3000.	3.4	73
60	Molecular genetic approaches to defining lipid function. Journal of Lipid Research, 2009, 50, S305-S310.	4.2	46
61	Lipid-engineered Escherichia coli Membranes Reveal Critical Lipid Headgroup Size for Protein Function. Journal of Biological Chemistry, 2009, 284, 954-965.	3.4	72
62	Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2084-2091.	2.6	327
63	Lipid-Dependent Membrane Protein Topogenesis. Annual Review of Biochemistry, 2009, 78, 515-540.	11.1	229
64	Functional roles of lipids in membranes. , 2008, , 1-37.		51
64 65	Functional roles of lipids in membranes. , 2008, , 1-37. Mutual effects of MinD–membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2496-2504.	2.6	51 25
64 65 66	 Functional roles of lipids in membranes. , 2008, , 1-37. Mutual effects of MinD–membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2496-2504. Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2505-2511. 	2.6 2.6	51 25 20
64 65 66 67	Functional roles of lipids in membranes., 2008, , 1-37. Mutual effects of MinD–membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2496-2504. Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2505-2511. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. Journal of Cell Biology, 2008, 183, 1213-1221.	2.6 2.6 5.2	51 25 20 113
 64 65 66 67 68 	Functional roles of lipids in membranes., 2008, , 1-37. Mutual effects of MinD–membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2496-2504. Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2505-2511. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. Journal of Cell Biology, 2008, 183, 1213-1221. To flip or not to flip: lipid–protein charge interactions are a determinant of final membrane protein topology. Journal of Cell Biology, 2008, 182, 925-935.	2.6 2.6 5.2 5.2	 51 25 20 113 128
 64 65 66 67 68 69 	Functional roles of lipids in membranes., 2008, , 1-37. Mutual effects of MinD–membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2496-2504. Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2505-2511. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. Journal of Cell Biology, 2008, 183, 1213-1221. To flip or not to flip: lipid–protein charge interactions are a determinant of final membrane protein topology. Journal of Cell Biology, 2008, 182, 925-935. Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-linked Disorders. Sub-Cellular Biochemistry, 2008, 49, 197-239.	2.6 2.6 5.2 5.2 2.4	 51 25 20 113 128 117
 64 65 66 67 68 69 70 	Functional roles of lipids in membranes., 2008, , 1-37. Mutual effects of MinDâ6 ^{em} embrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2496-2504. Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2505-2511. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. Journal of Cell Biology, 2008, 183, 1213-1221. To flip or not to flip: lipidâ6 ^{em} protein charge interactions are a determinant of final membrane protein copology. Journal of Cell Biology, 2008, 182, 925-935. Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-linked Disorders. Sub-Cellular Biochemistry, 2008, 49, 197-239. Electron microscopic structural analysis of mitochondrial supercomplex III 2 IV 2. FASEB Journal, 2007, 21, A612.	2.6 2.6 5.2 5.2 2.4 0.5	 51 25 20 113 128 117 0
 64 65 66 67 68 69 70 71 	Functional roles of lipids in membranes., 2008, , 1-37. Mutual effects of MinD–membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2496-2504. Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2505-2511. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. Journal of Cell Biology, 2008, 183, 1213-1221. To flip or not to flip: lipidâ€"protein charge interactions are a determinant of final membrane protein copology. Journal of Cell Biology, 2008, 182, 925-935. Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-linked Disorders. Sub-Cellular Biochemistry, 2008, 49, 197-239. Electron microscopic structural analysis of mitochondrial supercomplex III 2 IV 2. FASEB Journal, 2007, 21, A612. Regulation of cardiolipin synthase levels inSaccharomyces cerevisiae. Yeast, 2006, 23, 279-291.	2.6 2.6 5.2 5.2 2.4 0.5	 51 25 20 113 128 117 0 14

#	Article	IF	CITATIONS
73	Translational Regulation of Nuclear Gene COX4 Expression by Mitochondrial Content of Phosphatidylglycerol and Cardiolipin in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 743-753.	2.3	32
74	Lipids as determinants of membrane protein folding and topological organization. FASEB Journal, 2006, 20, A423.	0.5	0
75	Use of NAO to study the content and organization of cardiolipin (CL) in membranes. FASEB Journal, 2006, 20, A952.	0.5	0
76	Phospholipids as Determinants of Membrane Protein Topology. Journal of Biological Chemistry, 2005, 280, 26032-26038.	3.4	90
77	The Phosphatidylglycerol/Cardiolipin Biosynthetic Pathway Is Required for the Activation of Inositol Phosphosphingolipid Phospholipase C, Isc1p, during Growth of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 7170-7177.	3.4	49
78	The Osmotic Activation of Transporter ProP Is Tuned by Both Its C-terminal Coiled-coil and Osmotically Induced Changes in Phospholipid Composition. Journal of Biological Chemistry, 2005, 280, 41387-41394.	3.4	59
79	Cardiolipin Is Essential for Organization of Complexes III and IV into a Supercomplex in Intact Yeast Mitochondria. Journal of Biological Chemistry, 2005, 280, 29403-29408.	3.4	290
80	Role of membrane lipids in bacterial division-site selection. Current Opinion in Microbiology, 2005, 8, 135-142.	5.1	137
81	Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAMTM): Application to lipid-specific membrane protein topogenesis. Methods, 2005, 36, 148-171.	3.8	133
82	Monoglucosyldiacylglycerol, a Foreign Lipid, Can Substitute for Phosphatidylethanolamine in Essential Membrane-associated Functions in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 10484-10493.	3.4	68
83	Diversity and versatility of lipid–protein interactions revealed by molecular genetic approaches. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 19-39.	2.6	110
84	Detection and analysis of membrane interactions by a biomimetic colorimetric lipid/polydiacetylene assay. Analytical Biochemistry, 2003, 319, 96-104.	2.4	34
85	Reversible Topological Organization within a Polytopic Membrane Protein Is Governed by a Change in Membrane Phospholipid Composition. Journal of Biological Chemistry, 2003, 278, 50128-50135.	3.4	99
86	Effects of Phospholipid Composition on MinD-Membrane Interactions in Vitro and in Vivo. Journal of Biological Chemistry, 2003, 278, 22193-22198.	3.4	148
87	Cardiolipin Is Not Required to Maintain Mitochondrial DNA Stability or Cell Viability for Saccharomyces cerevisiae Grown at Elevated Temperatures. Journal of Biological Chemistry, 2003, 278, 35204-35210.	3.4	36
88	Gluing the Respiratory Chain Together. Journal of Biological Chemistry, 2002, 277, 43553-43556.	3.4	552
89	Cardiolipin and apoptosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1585, 97-107.	2.4	222
90	Chapter 1 Functional roles of lipids in membranes. New Comprehensive Biochemistry, 2002, 36, 1-35.	0.1	46

#	Article	IF	CITATIONS
91	A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO Journal, 2002, 21, 2107-2116.	7.8	205
92	Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. EMBO Journal, 2002, 21, 5673-5681.	7.8	95
93	Depletion of phosphatidylethanolamine affects secretion ofEscherichia colialkaline phosphatase and its transcriptional expression. FEBS Letters, 2001, 493, 85-90.	2.8	34
94	Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Letters, 2001, 507, 187-190.	2.8	122
95	Decreased Cardiolipin Synthesis Corresponds with Cytochromec Release in Palmitate-induced Cardiomyocyte Apoptosis. Journal of Biological Chemistry, 2001, 276, 38061-38067.	3.4	224
96	Lack of Mitochondrial Anionic Phospholipids Causes an Inhibition of Translation of Protein Components of the Electron Transport Chain. Journal of Biological Chemistry, 2001, 276, 25262-25272.	3.4	160
97	Visualization of Phospholipid Domains inEscherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange. Journal of Bacteriology, 2000, 182, 1172-1175.	2.2	412
98	Isolation of a Chinese Hamster Ovary (CHO) cDNA Encoding Phosphatidylglycerophosphate (PGP) Synthase, Expression of Which Corrects the Mitochondrial Abnormalities of a PGP Synthase-defective Mutant of CHO-K1 Cells. Journal of Biological Chemistry, 1999, 274, 1828-1834.	3.4	87
99	Phospholipid-assisted Refolding of an Integral Membrane Protein. Journal of Biological Chemistry, 1999, 274, 12339-12345.	3.4	125
100	Lipid-assisted Protein Folding. Journal of Biological Chemistry, 1999, 274, 36827-36830.	3.4	189
101	Negatively charged phospholipids influence the activity of the sensor kinase KdpD of Escherichia coli. Archives of Microbiology, 1999, 172, 295-302.	2.2	23
102	Reconstituted phosphatidylserine synthase from Escherichia coli is activated by anionic phospholipids and micelle-forming amphiphiles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1438, 281-294.	2.4	24
103	Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO Journal, 1998, 17, 5255-5264.	7.8	149
104	Genetic analysis of lipid–protein interactions in Escherichia coli membranes. BBA - Biomembranes, 1998, 1376, 455-466.	8.0	24
105	Isolation and Characterization of the Gene (CLS1) Encoding Cardiolipin Synthase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 14933-14941.	3.4	193
106	Regulation of Phosphatidylglycerophosphate Synthase Levels inSaccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 11638-11642.	3.4	22
107	The PEL1 Gene (Renamed PGS1) Encodes the Phosphatidylglycero-phosphate Synthase ofSaccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 9829-9836.	3.4	191
108	Localization and Function of Early Cell Division Proteins in Filamentous Escherichia coli Cells Lacking Phosphatidylethanolamine. Journal of Bacteriology, 1998, 180, 4252-4257.	2.2	110

#	Article	IF	CITATIONS
109	Regulation of Phospholipid Biosynthetic Enzymes by the Level of CDP-Diacylglycerol Synthase Activity. Journal of Biological Chemistry, 1997, 272, 11215-11220.	3.4	37
110	[10] Phosphatidylserine decarboxylases: Pyruvoyl-dependent enzymes from bacteria to mammals. Methods in Enzymology, 1997, 280, 81-88.	1.0	22
111	Isolation and Expression of an Isoform of Human CDP-Diacylglycerol Synthase cDNA. DNA and Cell Biology, 1997, 16, 281-289.	1.9	52
112	The CDS1 Gene Encoding CDP-diacylglycerol Synthase In Saccharomyces cerevisiae Is Essential for Cell Growth. Journal of Biological Chemistry, 1996, 271, 789-795.	3.4	142
113	Reduction of CDP-diacylglycerol Synthase Activity Results in the Excretion of Inositol by Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 29043-29048.	3.4	25
114	The Escherichia coli pgpB Gene Encodes for a Diacylglycerol Pyrophosphate Phosphatase Activity. Journal of Biological Chemistry, 1996, 271, 30548-30553.	3.4	94
115	A Phospholipid Acts as a Chaperone in Assembly of a Membrane Transport Protein. Journal of Biological Chemistry, 1996, 271, 11615-11618.	3.4	188
116	Phosphatidylethanolamine Is Required for in Vivo Function of the Membrane-associated Lactose Permease of Escherichia coli. Journal of Biological Chemistry, 1995, 270, 732-739.	3.4	138
117	Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1189, 225-232.	2.6	64
118	Role of acidic lipids in the translocation and channel activity of colicins A and N in Escherichia coli cells. FEBS Journal, 1993, 213, 217-221.	0.2	38
119	[37] Phosphatidylglycerophosphate synthase from Escherichia coli. Methods in Enzymology, 1992, 209, 313-321.	1.0	16
120	[34] Phosphatidylserine synthase from Escherichia coli. Methods in Enzymology, 1992, 209, 287-298.	1.0	19
121	[25] Phosphatidylglycerophosphate phosphatase from Escherichia coli. Methods in Enzymology, 1992, 209, 224-230.	1.0	2
122	[2] Strategies for generating and utilizing phospholipid synthesis mutants in escherichia coli. Methods in Enzymology, 1992, 209, 7-20.	1.0	11
123	Phospholipid-transfer proteins. Current Opinion in Cell Biology, 1991, 3, 621-625.	5.4	11
124	Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell, 1991, 64, 789-800.	28.9	363
125	Regulation of eukaryotic phospholipid metabolism 1. FASEB Journal, 1991, 5, 2258-2266.	0.5	49
126	An essential role for a phospholipid transfer protein in yeast Golgi function. Nature, 1990, 347, 561-562.	27.8	556

#	Article	IF	CITATIONS
127	The ATPase activity of secA is regulated by acidic phospholipids, secY, and the leader and mature domains of precursor proteins. Cell, 1990, 60, 271-280.	28.9	576
128	Steric course of the reaction catalyzed by phosphatidylserine decarboxylase from Escherichia coli. Bioorganic Chemistry, 1988, 16, 184-188.	4.1	7
129	Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast. Biochemistry, 1987, 26, 4022-4027.	2.5	57
130	Molecular structure of theuvrCgene ofEscherichia coli: identification of DNA sequences required for transcription of theuvrCgene. Nucleic Acids Research, 1982, 10, 5209-5221.	14.5	15
131	Intracellular Distribution of Enzymes of Phospholipid Metabolism in Several Gram-Negative Bacteria. Journal of Bacteriology, 1977, 132, 159-165.	2.2	54
132	Phosphatidylglycerol biosynthesis in Bacillus licheniformis. Resolution of membrane-bound enzymes by affinity chromatography on cytidinediphospho-sn-1,2-diacylglycerol sepharose. Biochemistry, 1976, 15, 974-979.	2.5	72
133	Ribosomal-associated phosphatidylserine synthetase from Escherichia coli: purification by substrate-specific elution from phosphocellulose using cytidine 5'-diphospho-1,2-diacyl-sn-glycerol. Biochemistry, 1976, 15, 5212-5218.	2.5	114
134	Membrane-associated phosphatidylglycerophosphate synthetase from Escherichia coli: purification by substrate affinity chromatography on cytidine 5'-diphospho-1,2-diacyl-sn-glycerol sepharose. Biochemistry, 1976, 15, 5205-5211.	2.5	113
135	Purification and Properties of Phosphatidylserine Decarboxylase from Escherichia coli. Journal of Biological Chemistry, 1974, 249, 3079-3084.	3.4	139
136	d-Serine Dehydratase from Escherichia coli. Journal of Biological Chemistry, 1970, 245, 4618-4628.	3.4	66
137	d-Serine Dehydratase from Escherichia coli. Journal of Biological Chemistry, 1970, 245, 4629-4635.	3.4	41