William Dowhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5866264/publications.pdf

Version: 2024-02-01

137 papers

11,923 citations

18482 62 h-index 27406 106 g-index

137 all docs

137 docs citations

times ranked

137

8590 citing authors

#	Article	IF	Citations
1	The ATPase activity of secA is regulated by acidic phospholipids, secY, and the leader and mature domains of precursor proteins. Cell, 1990, 60, 271-280.	28.9	576
2	An essential role for a phospholipid transfer protein in yeast Golgi function. Nature, 1990, 347, 561-562.	27.8	556
3	Gluing the Respiratory Chain Together. Journal of Biological Chemistry, 2002, 277, 43553-43556.	3.4	552
4	Visualization of Phospholipid Domains in Escherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange. Journal of Bacteriology, 2000, 182, 1172-1175.	2.2	412
5	Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell, 1991, 64, 789-800.	28.9	363
6	Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2084-2091.	2.6	327
7	Cardiolipin Is Essential for Organization of Complexes III and IV into a Supercomplex in Intact Yeast Mitochondria. Journal of Biological Chemistry, 2005, 280, 29403-29408.	3.4	290
8	Lipid-Dependent Membrane Protein Topogenesis. Annual Review of Biochemistry, 2009, 78, 515-540.	11.1	229
9	Decreased Cardiolipin Synthesis Corresponds with Cytochromec Release in Palmitate-induced Cardiomyocyte Apoptosis. Journal of Biological Chemistry, 2001, 276, 38061-38067.	3.4	224
10	Cardiolipin and apoptosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1585, 97-107.	2.4	222
11	Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chemistry and Physics of Lipids, 2014, 179, 42-48.	3.2	208
12	A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO Journal, 2002, 21, 2107-2116.	7.8	205
13	Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16504-16509.	7.1	195
14	Isolation and Characterization of the Gene (CLS1) Encoding Cardiolipin Synthase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 14933-14941.	3.4	193
15	The PEL1 Gene (Renamed PGS1) Encodes the Phosphatidylglycero-phosphate Synthase of Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 9829-9836.	3.4	191
16	Lipid-assisted Protein Folding. Journal of Biological Chemistry, 1999, 274, 36827-36830.	3.4	189
17	A Phospholipid Acts as a Chaperone in Assembly of a Membrane Transport Protein. Journal of Biological Chemistry, 1996, 271, 11615-11618.	3.4	188
18	Impact of Membrane Phospholipid Alterations in Escherichia coli on Cellular Function and Bacterial Stress Adaptation. Journal of Bacteriology, 2017, 199, .	2.2	179

#	Article	IF	CITATIONS
19	Mitochondrial Phosphatase PTPMT1 Is Essential for Cardiolipin Biosynthesis. Cell Metabolism, 2011, 13, 690-700.	16.2	176
20	Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nature Communications, 2016, 7, 12086.	12.8	163
21	Lack of Mitochondrial Anionic Phospholipids Causes an Inhibition of Translation of Protein Components of the Electron Transport Chain. Journal of Biological Chemistry, 2001, 276, 25262-25272.	3.4	160
22	Daptomycin-Resistant Enterococcus faecalis Diverts the Antibiotic Molecule from the Division Septum and Remodels Cell Membrane Phospholipids. MBio, 2013, 4, .	4.1	152
23	Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO Journal, 1998, 17, 5255-5264.	7.8	149
24	Effects of Phospholipid Composition on MinD-Membrane Interactions in Vitro and in Vivo. Journal of Biological Chemistry, 2003, 278, 22193-22198.	3.4	148
25	The CDS1 Gene Encoding CDP-diacylglycerol Synthase In Saccharomyces cerevisiae Is Essential for Cell Growth. Journal of Biological Chemistry, 1996, 271, 789-795.	3.4	142
26	Purification and Properties of Phosphatidylserine Decarboxylase from Escherichia coli. Journal of Biological Chemistry, 1974, 249, 3079-3084.	3.4	139
27	Phosphatidylethanolamine Is Required for in Vivo Function of the Membrane-associated Lactose Permease of Escherichia coli. Journal of Biological Chemistry, 1995, 270, 732-739.	3.4	138
28	Role of membrane lipids in bacterial division-site selection. Current Opinion in Microbiology, 2005, 8, 135-142.	5.1	137
29	Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAMTM): Application to lipid-specific membrane protein topogenesis. Methods, 2005, 36, 148-171.	3.8	133
30	To flip or not to flip: lipid–protein charge interactions are a determinant of final membrane protein topology. Journal of Cell Biology, 2008, 182, 925-935.	5.2	128
31	Phospholipid-assisted Refolding of an Integral Membrane Protein. Journal of Biological Chemistry, 1999, 274, 12339-12345.	3.4	125
32	Cardiolipin-dependent Reconstitution of Respiratory Supercomplexes from Purified Saccharomyces cerevisiae Complexes III and IV. Journal of Biological Chemistry, 2013, 288, 401-411.	3.4	124
33	Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nature Communications, 2019, 10, 3923.	12.8	123
34	Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Letters, 2001, 507, 187-190.	2.8	122
35	Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-linked Disorders. Sub-Cellular Biochemistry, 2008, 49, 197-239.	2.4	117
36	Ribosomal-associated phosphatidylserine synthetase from Escherichia coli: purification by substrate-specific elution from phosphocellulose using cytidine 5'-diphospho-1,2-diacyl-sn-glycerol. Biochemistry, 1976, 15, 5212-5218.	2.5	114

#	Article	IF	CITATIONS
37	Membrane-associated phosphatidylglycerophosphate synthetase from Escherichia coli: purification by substrate affinity chromatography on cytidine 5'-diphospho-1,2-diacyl-sn-glycerol sepharose. Biochemistry, 1976, 15, 5205-5211.	2.5	113
38	The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. Journal of Cell Biology, 2008, 183, 1213-1221.	5.2	113
39	Lipids and topological rules governing membrane protein assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1475-1488.	4.1	113
40	Arrangement of the Respiratory Chain Complexes in Saccharomyces cerevisiae Supercomplex III2IV2 Revealed by Single Particle Cryo-Electron Microscopy. Journal of Biological Chemistry, 2012, 287, 23095-23103.	3.4	112
41	Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. Journal of Clinical Investigation, 2014, 124, 2750-2761.	8.2	112
42	Diversity and versatility of lipid–protein interactions revealed by molecular genetic approaches. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 19-39.	2.6	110
43	Localization and Function of Early Cell Division Proteins in Filamentous Escherichia coli Cells Lacking Phosphatidylethanolamine. Journal of Bacteriology, 1998, 180, 4252-4257.	2.2	110
44	Reversible Topological Organization within a Polytopic Membrane Protein Is Governed by a Change in Membrane Phospholipid Composition. Journal of Biological Chemistry, 2003, 278, 50128-50135.	3.4	99
45	Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. EMBO Journal, 2002, 21, 5673-5681.	7.8	95
46	The Escherichia coli pgpB Gene Encodes for a Diacylglycerol Pyrophosphate Phosphatase Activity. Journal of Biological Chemistry, 1996, 271, 30548-30553.	3.4	94
47	Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15057-15062.	7.1	91
48	Phospholipids as Determinants of Membrane Protein Topology. Journal of Biological Chemistry, 2005, 280, 26032-26038.	3.4	90
49	A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 471-494.	2.4	90
50	Isolation of a Chinese Hamster Ovary (CHO) cDNA Encoding Phosphatidylglycerophosphate (PGP) Synthase, Expression of Which Corrects the Mitochondrial Abnormalities of a PGP Synthase-defective Mutant of CHO-K1 Cells. Journal of Biological Chemistry, 1999, 274, 1828-1834.	3.4	87
51	In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9338-9343.	7.1	87
52	Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nature Communications, 2017, 8, 14108.	12.8	81
53	Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Science Advances, 2020, 6, eaaz6333.	10.3	81
54	Phosphatidylethanolamine and Monoglucosyldiacylglycerol Are Interchangeable in Supporting Topogenesis and Function of the Polytopic Membrane Protein Lactose Permease. Journal of Biological Chemistry, 2006, 281, 19172-19178.	3.4	80

#	Article	IF	CITATIONS
55	Dynamic membrane protein topological switching upon changes in phospholipid environment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13874-13879.	7.1	75
56	Phosphatidic Acid and N-Acylphosphatidylethanolamine Form Membrane Domains in Escherichia coli Mutant Lacking Cardiolipin and Phosphatidylglycerol. Journal of Biological Chemistry, 2009, 284, 2990-3000.	3.4	73
57	Lipid–protein interactions as determinants of membrane protein structure and function. Biochemical Society Transactions, 2011, 39, 767-774.	3.4	73
58	Phosphatidylglycerol biosynthesis in Bacillus licheniformis. Resolution of membrane-bound enzymes by affinity chromatography on cytidinediphospho-sn-1,2-diacylglycerol sepharose. Biochemistry, 1976, 15, 974-979.	2.5	72
59	Lipid-engineered Escherichia coli Membranes Reveal Critical Lipid Headgroup Size for Protein Function. Journal of Biological Chemistry, 2009, 284, 954-965.	3.4	72
60	Monoglucosyldiacylglycerol, a Foreign Lipid, Can Substitute for Phosphatidylethanolamine in Essential Membrane-associated Functions in Escherichia coli. Journal of Biological Chemistry, 2004, 279, 10484-10493.	3.4	68
61	Lipid-Protein Interactions Drive Membrane Protein Topogenesis in Accordance with the Positive Inside Rule. Journal of Biological Chemistry, 2009, 284, 9637-9641.	3.4	67
62	d-Serine Dehydratase from Escherichia coli. Journal of Biological Chemistry, 1970, 245, 4618-4628.	3.4	66
63	Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1189, 225-232.	2.6	64
64	The Osmotic Activation of Transporter ProP Is Tuned by Both Its C-terminal Coiled-coil and Osmotically Induced Changes in Phospholipid Composition. Journal of Biological Chemistry, 2005, 280, 41387-41394.	3.4	59
65	Lipid-dependent Generation of Dual Topology for a Membrane Protein. Journal of Biological Chemistry, 2012, 287, 37939-37948.	3.4	58
66	Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast. Biochemistry, 1987, 26, 4022-4027.	2.5	57
67	Intracellular Distribution of Enzymes of Phospholipid Metabolism in Several Gram-Negative Bacteria. Journal of Bacteriology, 1977, 132, 159-165.	2.2	54
68	Adenine Nucleotide-dependent Regulation of Assembly of Bacterial Tubulin-like FtsZ by a Hypermorph of Bacterial Actin-like FtsA*. Journal of Biological Chemistry, 2009, 284, 14079-14086.	3.4	53
69	Understanding phospholipid function: Why are there so many lipids?. Journal of Biological Chemistry, 2017, 292, 10755-10766.	3.4	53
70	Isolation and Expression of an Isoform of Human CDP-Diacylglycerol Synthase cDNA. DNA and Cell Biology, 1997, 16, 281-289.	1.9	52
71	Functional roles of lipids in membranes. , 2008, , 1-37.		51
72	Lipid-Assisted Membrane Protein Folding and Topogenesis. Protein Journal, 2019, 38, 274-288.	1.6	50

#	Article	IF	CITATIONS
73	Regulation of eukaryotic phospholipid metabolism 1. FASEB Journal, 1991, 5, 2258-2266.	0.5	49
74	The Phosphatidylglycerol/Cardiolipin Biosynthetic Pathway Is Required for the Activation of Inositol Phosphosphingolipid Phospholipase C, Isc1p, during Growth of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 7170-7177.	3.4	49
75	Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease. Scientific Reports, 2017, 7, 15281.	3.3	47
76	Chapter 1 Functional roles of lipids in membranes. New Comprehensive Biochemistry, 2002, 36, 1-35.	0.1	46
77	Molecular genetic approaches to defining lipid function. Journal of Lipid Research, 2009, 50, S305-S310.	4.2	46
78	Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity. Blood, 2015, 125, 1643-1652.	1.4	44
79	d-Serine Dehydratase from Escherichia coli. Journal of Biological Chemistry, 1970, 245, 4629-4635.	3.4	41
80	Lipids and Topological Rules of Membrane Protein Assembly. Journal of Biological Chemistry, 2011, 286, 15182-15194.	3.4	39
81	Role of acidic lipids in the translocation and channel activity of colicins A and N in Escherichia coli cells. FEBS Journal, 1993, 213, 217-221.	0.2	38
82	Regulation of Phospholipid Biosynthetic Enzymes by the Level of CDP-Diacylglycerol Synthase Activity. Journal of Biological Chemistry, 1997, 272, 11215-11220.	3.4	37
83	Cardiolipin Is Not Required to Maintain Mitochondrial DNA Stability or Cell Viability for Saccharomyces cerevisiae Grown at Elevated Temperatures. Journal of Biological Chemistry, 2003, 278, 35204-35210.	3.4	36
84	N-acylated Peptides Derived from Human Lactoferricin Perturb Organization of Cardiolipin and Phosphatidylethanolamine in Cell Membranes and Induce Defects in Escherichia coli Cell Division. PLoS ONE, 2014, 9, e90228.	2.5	35
85	Depletion of phosphatidylethanolamine affects secretion of Escherichia colial kaline phosphatase and its transcriptional expression. FEBS Letters, 2001, 493, 85-90.	2.8	34
86	Detection and analysis of membrane interactions by a biomimetic colorimetric lipid/polydiacetylene assay. Analytical Biochemistry, 2003, 319, 96-104.	2.4	34
87	Translational Regulation of Nuclear Gene COX4 Expression by Mitochondrial Content of Phosphatidylglycerol and Cardiolipin in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006, 26, 743-753.	2.3	32
88	Modulation of Myocardial Mitochondrial Mechanisms during Severe Polymicrobial Sepsis in the Rat. PLoS ONE, 2011, 6, e21285.	2.5	32
89	Molecular genetic and biochemical approaches for defining lipid-dependent membrane protein folding. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1097-1107.	2.6	31
90	Biosynthetic preparation of selectively deuterated phosphatidylcholine in genetically modified Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 241-254.	3.6	31

#	Article	IF	Citations
91	Study of Polytopic Membrane Protein Topological Organization as a Function of Membrane Lipid Composition. Methods in Molecular Biology, 2010, 619, 79-101.	0.9	31
92	Structural and functional characterization of protein–lipid interactions of the Salmonella typhimurium melibiose transporter MelB. BMC Biology, 2018, 16, 85.	3.8	30
93	Cardiolipin is required in vivo for the stability of bacterial translocon and optimal membrane protein translocation and insertion. Scientific Reports, 2020, 10, 6296.	3.3	30
94	Proper Fatty Acid Composition Rather than an Ionizable Lipid Amine Is Required for Full Transport Function of Lactose Permease from Escherichia coli. Journal of Biological Chemistry, 2013, 288, 5873-5885.	3.4	29
95	Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation. Journal of Biological Chemistry, 2017, 292, 1613-1624.	3.4	29
96	Reduction of CDP-diacylglycerol Synthase Activity Results in the Excretion of Inositol by Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 29043-29048.	3.4	25
97	Mutual effects of MinD–membrane interaction: I. Changes in the membrane properties induced by MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2496-2504.	2.6	25
98	Genetic analysis of lipid–protein interactions in Escherichia coli membranes. BBA - Biomembranes, 1998, 1376, 455-466.	8.0	24
99	Reconstituted phosphatidylserine synthase from Escherichia coli is activated by anionic phospholipids and micelle-forming amphiphiles. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1438, 281-294.	2.4	24
100	Negatively charged phospholipids influence the activity of the sensor kinase KdpD of Escherichia coli. Archives of Microbiology, 1999, 172, 295-302.	2.2	23
101	[10] Phosphatidylserine decarboxylases: Pyruvoyl-dependent enzymes from bacteria to mammals. Methods in Enzymology, 1997, 280, 81-88.	1.0	22
102	Regulation of Phosphatidylglycerophosphate Synthase Levels inSaccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 11638-11642.	3.4	22
103	Mutual effects of MinD-membrane interaction: II. Domain structure of the membrane enhances MinD binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2505-2511.	2.6	20
104	[34] Phosphatidylserine synthase from Escherichia coli. Methods in Enzymology, 1992, 209, 287-298.	1.0	19
105	[37] Phosphatidylglycerophosphate synthase from Escherichia coli. Methods in Enzymology, 1992, 209, 313-321.	1.0	16
106	Cardiolipin Synthesis in Skeletal Muscle Is Rhythmic and Modifiable by Age and Diet. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	4.0	16
107	Molecular structure of theuvrCgene ofEscherichia coli: identification of DNA sequences required for transcription of theuvrCgene. Nucleic Acids Research, 1982, 10, 5209-5221.	14.5	15
108	Regulation of cardiolipin synthase levels in Saccharomyces cerevisiae. Yeast, 2006, 23, 279-291.	1.7	14

#	Article	IF	Citations
109	Cardiolipin Is Dispensable for Oxidative Phosphorylation and Non-fermentative Growth of Alkaliphilic Bacillus pseudofirmus OF4. Journal of Biological Chemistry, 2014, 289, 2960-2971.	3.4	12
110	Phospholipid-transfer proteins. Current Opinion in Cell Biology, 1991, 3, 621-625.	5.4	11
111	[2] Strategies for generating and utilizing phospholipid synthesis mutants in escherichia coli. Methods in Enzymology, 1992, 209, 7-20.	1.0	11
112	Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Frontiers in Molecular Biosciences, 2021, 8, 666203.	3.5	10
113	Influence of K+-dependent membrane lipid composition on the expression of the kdpFABC operon in Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 32-39.	2.6	9
114	The Raetz Pathway for Lipid A Biosynthesis: Christian Rudolf Hubert Raetz, MD PhD, 1946–2011. Journal of Lipid Research, 2011, 52, 1857-1860.	4.2	9
115	Christian Raetz: Scientist and Friend Extraordinaire. Annual Review of Biochemistry, 2013, 82, 1-24.	11.1	9
116	Importance of phosphorylation/dephosphorylation cycles on lipid-dependent modulation of membrane protein topology by posttranslational phosphorylation. Journal of Biological Chemistry, 2019, 294, 18853-18862.	3.4	9
117	Lipids and Extracellular Materials. Annual Review of Biochemistry, 2014, 83, 45-49.	11.1	8
118	Functional Roles of Lipids in Membranes. , 2016, , 1-40.		8
119	Steric course of the reaction catalyzed by phosphatidylserine decarboxylase from Escherichia coli. Bioorganic Chemistry, 1988, 16, 184-188.	4.1	7
120	Effects of mixed proximal and distal topogenic signals on the topological sensitivity of a membrane protein to the lipid environment. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1291-1300.	2.6	7
121	The lipid-dependent structure and function of LacY can be recapitulated and analyzed in phospholipid-containing detergent micelles. Scientific Reports, 2019, 9, 11338.	3.3	7
122	Chris Raetz, scientist and enduring friend. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17255-17256.	7.1	6
123	May the Force Be With You: Unfolding Lipid-Protein Interactions By Single-Molecule Force Spectroscopy. Structure, 2015, 23, 612-614.	3.3	4
124	Structural and Functional Adaptability of Sucrose and Lactose Permeases from <i>Escherichia coli</i> to the Membrane Lipid Composition. Biochemistry, 2020, 59, 1854-1868.	2.5	3
125	Functional Roles of Individual Membrane Phospholipids in Escherichia coli and Saccharomyces cerevisiae., 2017,, 1-22.		3
126	Flip-Flopping Membrane Proteins: How the Charge Balance Rule Governs Dynamic Membrane Protein Topology., 2018,, 1-28.		3

#	Article	lF	CITATIONS
127	Role of Cardiolipin in Mitochondrial Supercomplex Assembly. , 2015, , 81-106.		3
128	[25] Phosphatidylglycerophosphate phosphatase from Escherichia coli. Methods in Enzymology, 1992, 209, 224-230.	1.0	2
129	The Raetz Pathway for Lipid A Biosynthesis:Christian Rudolf Hubert Raetz, M.D., Ph.D. 1946-2011. Glycobiology, 2012, 22, 3-6.	2.5	1
130	Functional roles of lipids in biological membranes. , 2021, , 1-51.		1
131	Elevated Adenosine Signaling Via Adenosine A2B Receptor Induces Normal and Sickle Erythrocyte Sphingosine Kinase 1 Activity. Blood, 2014, 124, 4067-4067.	1.4	1
132	Functional Roles of Individual Membrane Phospholipids in Escherichia coli and Saccharomyces cerevisiae., 2019,, 553-574.		0
133	Flip-Flopping Membrane Proteins: How the Charge Balance Rule Governs Dynamic Membrane Protein Topology., 2019,, 609-636.		0
134	Lipids as determinants of membrane protein folding and topological organization. FASEB Journal, 2006, 20, A423.	0.5	0
135	Use of NAO to study the content and organization of cardiolipin (CL) in membranes. FASEB Journal, 2006, 20, A952.	0.5	0
136	Electron microscopic structural analysis of mitochondrial supercomplex III 2 IV 2. FASEB Journal, 2007, 21, A612.	0.5	0
137	Lipid-Assisted Membrane Protein Folding and Topogenesis. , 2011, , 177-201.		O