Wei-Wei Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/586447/publications.pdf

Version: 2024-02-01

	471509	501196
956	17	28
citations	h-index	g-index
62	60	0.50
63	63	958
docs citations	times ranked	citing authors
	citations 63	956 17 citations h-index 63 63

#	Article	IF	CITATIONS
1	Recent Advances in Transition-Metal-Catalyzed C–H Addition to Nitriles. Synthesis, 2022, 54, 33-48.	2.3	7
2	Radical Alkene-Trifluoromethylation-Triggered Nitrile Insertion/Remote Functionalization Relay Processes: Diverse Synthesis of Trifluoromethylated Azaheterocycles Enabled by Copper Catalysis. Organic Letters, 2022, 24, 1110-1115.	4.6	15
3	Radical addition to the Cî€C bond meets (1, <i>n</i>)-HAT: recent advances in the remote C(sp ^{)â€"H or C(sp⁾²)â€"H functionalization of alkenes. Organic Chemistry Frontiers, 2022, 9, 4490-4506.}	4.5	13
4	Organocatalytic Allylic Alkylation of \hat{l}_{\pm} -(Alkylideneamino)nitriles and Its Application in the Preparation of Multisubstituted 1-Pyrrolines. Journal of Organic Chemistry, 2022, 87, 10090-10104.	3.2	1
5	BrÃ, nsted Acid-Promoted Cyclodimerization of Indolyl Ketones: Construction of Indole Fused-Oxabicyclo[3.3.1] nonane and -Cyclooctatetraene Ring Systems. Organic Letters, 2021, 23, 166-171.	4.6	3
6	Controllable Lewis Base Catalyzed Michael Addition of α-AminoÂnitriles to Activated Alkenes: Facile Synthesis of Functionalized γ-Amino Acid Esters and γ-Lactams. Synthesis, 2021, 53, 1833-1841.	2.3	2
7	α-Iminol Rearrangement Triggered by Pd-Catalyzed C–H Addition to Nitriles Sequences: Synthesis of Functionalized α-Amino Cyclopentanones. Organic Letters, 2021, 23, 1021-1025.	4.6	12
8	Copper-Catalyzed Difluoroalkylation of Alkene/Nitrile Insertion/Cyclization Tandem Sequences: Construction of Difluorinated Bicyclic Amidines. Organic Letters, 2021, 23, 9591-9596.	4.6	11
9	Organocatalytic Isomerization/Allylic Alkylation of $\langle i \rangle O \langle i \rangle$ -Acylated Hemithioacetals and Their Application in Tandem Sequence to Access 2,7-Dioxabicyclo[2.2.1]heptan-3-one Derivatives. Journal of Organic Chemistry, 2020, 85, 1168-1180.	3. 2	2
10	CF ₃ SO ₂ Na as a Bifunctional Reagent: Electrochemical Trifluoromethylation of Alkenes Accompanied by SO ₂ Insertion to Access Trifluoromethylated Cyclic N‧ulfonylimines. Angewandte Chemie, 2020, 132, 7333-7337.	2.0	18
11	CF ₃ SO ₂ Na as a Bifunctional Reagent: Electrochemical Trifluoromethylation of Alkenes Accompanied by SO ₂ Insertion to Access Trifluoromethylated Cyclic Nâ€Sulfonylimines. Angewandte Chemie - International Edition, 2020, 59, 7266-7270.	13.8	69
12	Sulfa-Michael addition initiated one-pot tandem sequence: Construction of highly substituted 2-cyclopentenones from allylic cyanohydrins. Tetrahedron, 2020, 76, 130922.	1.9	1
13	Thiophene Derivatives as New Anticancer Agents and Their Therapeutic Delivery Using Folate Receptor-Targeting Nanocarriers. ACS Omega, 2019, 4, 8874-8880.	3. 5	18
14	An organocatalytic hydroalkoxylation/Claisen rearrangement/Michael addition tandem sequence: divergent synthesis of multi-substituted 2,3-dihydrofurans and 2,3-dihydropyrroles from cyanohydrins. Green Chemistry, 2019, 21, 1614-1618.	9.0	15
15	Synthesis of 2,4,5-Trisubstituted Oxazoles via Pd-Catalyzed C–H Addition to Nitriles/Cyclization Sequences. Organic Letters, 2019, 21, 2745-2749.	4.6	31
16	Efficient synthesis of spirooxindolyl oxazol-2(5 <i>H</i>)-ones <i>via</i> palladium(<scp>ii</scp>)-catalyzed addition of arylboronic acids to nitriles. RSC Advances, 2019, 9, 29424-29428.	3.6	9
17	The Chemical Synthesis and Applications of Tropane Alkaloids. The Alkaloids Chemistry and Biology, 2019, 81, 151-233.	2.0	17
18	Versatile synthesis of functionalized \hat{l}^2 - and \hat{l}^3 -carbolines via Pd-catalyzed Câ \in "H addition to nitriles/cyclization sequences. Chemical Communications, 2018, 54, 2048-2051.	4.1	40

#	Article	IF	CITATIONS
19	Efficient Access to cis-Hydrobenzo[b]oxepines: Rhodium(I)-Catalyzed Cyclization of Cyclohexadienone-Tethered o-Tolyl-Substituted Alkynes. Synlett, 2018, 29, 1223-1228.	1.8	14
20	Pd-Catalyzed intramolecular Câ€"H addition to the cyano-group: construction of functionalized 2,3-fused thiophene scaffolds. Organic Chemistry Frontiers, 2018, 5, 801-805.	4.5	11
21	Highly diastereo- and enantioselective construction of phthalide-oxindole hybrids bearing vicinal quaternary chiral centers via an organocatalytic allylic alkylation. Tetrahedron Letters, 2018, 59, 3132-3135.	1.4	13
22	Indolyl-chalcone derivatives induce hepatocellular carcinoma cells apoptosis through oxidative stress related mitochondrial pathway in vitro and in vivo. Chemico-Biological Interactions, 2018, 293, 61-69.	4.0	11
23	Catalytic Intramolecular Acylsulfenylation of Activated Alkenes: Enantioselective Synthesis of 3,3-Disubstituted Quinoline-2,4-diones. ACS Catalysis, 2018, 8, 5460-5465.	11.2	7
24	Controllable Diastereodivergent Synthesis of Pyrrolo[2,1- <i>a</i>]isoquinolines via Catalytic Intramolecular Acylsulfenylation of Activated Alkenes. Journal of Organic Chemistry, 2017, 82, 4829-4839.	3.2	10
25	Diastereoselective synthesis of dihydroindolizin-3(2H)-one derivatives via catalytic sulfur-Michael addition triggered intramolecular tandem sequence. Tetrahedron Letters, 2017, 58, 2554-2559.	1.4	1
26	Recent Developments in Palladium-Catalyzed Oxidative Cascade Carbocyclization. ACS Catalysis, 2017, 7, 7051-7063.	11.2	40
27	Lewis Base-Catalyzed One-Pot Cascade Sequences of <i>O</i> -Alkenyl-Substituted Cyanohydrins: Diastereoselective Synthesis of Multisubstituted Dihydrofurans. Organic Letters, 2017, 19, 6598-6601.	4.6	9
28	Regioselective synthesis of functionalized dihydroquinolines via organocatalytic allylic alkylation. Chemical Research in Chinese Universities, 2016, 32, 634-640.	2.6	1
29	Catalytic Metal-Free Intramolecular Acylcyanation: Synthesis of Functionalized Pyridine Derivatives Bearing Pendent Stereocenters. Synthesis, 2016, 48, 3567-3574.	2.3	3
30	Pd-Catalyzed Intramolecular Cyclization via Direct C–H Addition to Nitriles: Skeletal Diverse Synthesis of Fused Polycyclic Indoles. Organic Letters, 2016, 18, 5002-5005.	4.6	38
31	Copper-Promoted Cyclization of \hat{I} ±-Amino Nitrile-Tethered Enynes: Controllable Synthesis of 3-Azabicyclo[4.1.0]hepta-2,4-dienes and 4,5-Dihydro-3 <i>H</i> -azepines. Organic Letters, 2016, 18, 3854-3857.	4.6	5
32	Phosphine-catalyzed [4+2] annulations of \hat{l}_{\pm} -aminonitriles with allenoates: Synthesis of functionalized tetrahydropyridines. Chemical Research in Chinese Universities, 2016, 32, 385-389.	2.6	7
33	Asymmetric Construction of Functionalized 1,2-Dihydropyridine and Pyridine Derivatives with Adjacent Stereocenters via a Unified Metal-Free Catalytic Approach. Journal of Organic Chemistry, 2016, 81, 5717-5725.	3.2	13
34	Facile Synthesis of Multifunctional Pyrrolo[2,1-a]isoquinolin-3(2H)-ones via Sulfa-Michael-Triggered One-Pot Reactions. Synthesis, 2016, 48, 357-364.	2.3	6
35	Stereoselective synthesis of organosulfur compounds incorporating N-aromatic heterocyclic motifs and quaternary carbon centers via a sulfa-Michael triggered tandem reaction. Chemical Communications, 2015, 51, 9714-9717.	4.1	9
36	Diastereoselective allylic rearrangement of Morita–Baylis–Hillman C-adducts: a facile access to functionalized 1, 2-dihydroisoquinolines. Tetrahedron, 2015, 71, 941-948.	1.9	4

#	Article	IF	CITATIONS
37	Synthesis of functionalized 1,2-dihydropyridines bearing quaternary carbon centers via an organocatalytic allylic alkylation. Tetrahedron Letters, 2015, 56, 937-940.	1.4	6
38	Asymmetric Synthesis of Dihydronaphthoquinones Containing Adjacent Stereocenters via a Sulfa-Michael Addition Triggered Ring-Expansion Approach. Journal of Organic Chemistry, 2015, 80, 4627-4637.	3.2	14
39	A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes. PLoS ONE, 2015, 10, e0136649.	2.5	56
40	Lewis Base-Promoted Rearrangement of Allylic Cyanohydrins: Construction of Functionalized Nitriles Bearing 1,3-Diketone Moieties. Journal of Organic Chemistry, 2014, 79, 10890-10898.	3.2	5
41	Metalâ€Free Intramolecular Carbocyanation of Alkenes: Catalytic Stereoselective Construction of Pyrrolo[2,1â€ <i>a</i>]isoquinolines with Multiple Substituents. Chemistry - A European Journal, 2014, 20, 13876-13880.	3.3	14
42	Synthesis of densely functionalized α-methylene γ-butyrolactones via an organocatalytic one-pot allylic-alkylation–cyclization reaction. Tetrahedron Letters, 2014, 55, 479-482.	1.4	10
43	Nucleophilic Phosphine-Catalyzed Intramolecular Michael Reactions of N-Allylic Substituted α-Amino Nitriles: Construction of Functionalized Pyrrolidine Rings via 5-endo-trig Cyclizations. Journal of Organic Chemistry, 2014, 79, 4456-4462.	3.2	33
44	Asymmetric Synthesis of Functionalized Dihydronaphthoquinones Containing Quaternary Carbon Centers via a Metal-Free Catalytic Intramolecular Acylcyanation of Activated Alkenes. Organic Letters, 2014, 16, 3380-3383.	4.6	26
45	Metalâ€Free Intramolecular Carbocyanation of Activated Alkenes: Functionalized Nitriles Bearing βâ€Quaternary Carbon Centers. Angewandte Chemie - International Edition, 2013, 52, 9296-9300.	13.8	20
46	Lewis base catalyzed asymmetric substitution/Diels–Alder cascade reaction: a rapid and efficient construction of enantioenriched diverse tricyclic heterocycles. Organic and Biomolecular Chemistry, 2013, 11, 7080.	2.8	13
47	Asymmetric organocatalytic allylic alkylation of Reissert compounds: a facile access to chiral 1,1-disubstituted 1,2-dihydroisoquinolines. Organic and Biomolecular Chemistry, 2013, 11, 984.	2.8	21
48	A Novel Multicomponent Tandem Phosphine-Catalyzed Umpolung Reaction: Facile Access to Highly Functionalized \hat{l}_{\pm} -Aminonitriles. Synthesis, 2012, 44, 1849-1853.	2.3	4
49	Lewis Base Promoted Intramolecular Acylcyanation of $\hat{l}\pm$ -Substituted Activated Alkenes: Construction of Ketones Bearing \hat{l}^2 -Quaternary Carbon Centers. Organic Letters, 2012, 14, 2354-2357.	4.6	17
50	Controllable Regioselective Construction of Both Functional αâ€Methyleneâ€Î²â€•and â€Î³â€amino Acid Derivativ Through an Organocatalyzed Tandem Allylic Alkylation and Amination. European Journal of Organic Chemistry, 2012, 2012, 5324-5334.	ves 2.4	18
51	Construction of highly functional $\hat{l}\pm$ -amino nitriles via a novel multicomponent tandem organocatalytic reaction: a facile access to $\hat{l}\pm$ -methylene \hat{l}^3 -lactams. Organic and Biomolecular Chemistry, 2012, 10, 2214.	2.8	31
52	Construction of Highly Functional Quaternary Carbon Stereocenters <i>via < /i> an Organocatalytic Tandem Cyanationâ€"Allylic Alkylation Reaction. Organic Letters, 2011, 13, 6164-6167.</i>	4.6	27
53	A facile reaction of imines with telluronium allylide. Highly stereoselective synthesis of vinylaziridinesElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b4/b400464g/. Chemical Communications, 2004, , 1516.	4.1	30
54	Controllable Diastereoselective Cyclopropanation. Enantioselective Synthesis of Vinylcyclopropanes via Chiral Telluronium Ylides. Journal of the American Chemical Society, 2003, 125, 13030-13031.	13.7	120

#	Article	IF	CITATIONS
55	Palladium-catalyzed direct construction of oxazoline-containing polycyclic scaffolds via tandem addition/cyclization of nitriles and arylboronic acids. Organic Chemistry Frontiers, 0, , .	4.5	3