Philipp Kaldis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5864128/publications.pdf

Version: 2024-02-01

143 9,973 47
papers citations h-index

47 95
-index g-index

200 14324

citing authors

38395

200 all docs

200 docs citations

times ranked

#	Article	IF	Citations
1	Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS Journal, 2023, 290, 620-648.	4.7	22
2	Pairing structural reconstruction with catalytic competence to evaluate the mechanisms of key enzymes in the folateâ€mediated oneâ€carbon pathway. FEBS Journal, 2023, 290, 2279-2291.	4.7	7
3	Editorial: Editor's Pick 2021: Highlights in Cell Growth and Division. Frontiers in Cell and Developmental Biology, 2022, 10, 859568.	3.7	O
4	The catalytic mechanism of the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2). PLoS Computational Biology, 2022, 18, e1010140.	3.2	2
5	Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene, 2021, 40, 2339-2354.	5.9	36
6	Protective Functions of ZO-2/Tjp2 Expressed in Hepatocytes and Cholangiocytes Against Liver Injury and Cholestasis. Gastroenterology, 2021, 160, 2103-2118.	1.3	17
7	Histidine protonation states are key in the LigI catalytic reaction mechanism. Proteins: Structure, Function and Bioinformatics, 2021, , .	2.6	2
8	Knockout of the non-essential gene SUGCT creates diet-linked, age-related microbiome disbalance with a diabetes-like metabolic syndrome phenotype. Cellular and Molecular Life Sciences, 2020, 77, 3423-3439.	5.4	19
9	Role of cyclin-dependent kinase 2 in the progression of mouse juvenile cystic kidney disease. Laboratory Investigation, 2020, 100, 696-711.	3.7	6
10	The Greatwall kinase safeguards the genome integrity by affecting the kinome activity in mitosis. Oncogene, 2020, 39, 6816-6840.	5.9	9
11	PRDM15 is a key regulator of metabolism critical to sustain B-cell lymphomagenesis. Nature Communications, 2020, 11, 3520.	12.8	20
12	Cyclin-Dependent Kinase 1 Is Essential for Muscle Regeneration and Overload Muscle Fiber Hypertrophy. Frontiers in Cell and Developmental Biology, 2020, 8, 564581.	3.7	17
13	Impaired hepatocyte cell division induces progenitor cell activation and emergence of bi-phenotypic hepatocytes. Journal of Hepatology, 2020, 73, S113-S114.	3.7	0
14	Less-well known functions of cyclin/CDK complexes. Seminars in Cell and Developmental Biology, 2020, 107, 54-62.	5.0	17
15	Cascading proton transfers are a hallmark of the catalytic mechanism of SAMâ€dependent methyltransferases. FEBS Letters, 2020, 594, 2128-2139.	2.8	8
16	MetaboKit: a comprehensive data extraction tool for untargeted metabolomics. Molecular Omics, 2020, 16, 436-447.	2.8	12
17	Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division. Hepatology International, 2020, 14, 463-474.	4.2	36
18	Infertility-Causing Haploinsufficiency Reveals TRIM28/KAP1 Requirement in Spermatogonia. Stem Cell Reports, 2020, 14, 818-827.	4.8	14

#	Article	IF	CITATIONS
19	A novel function for CDK2 activity at meiotic crossover sites. PLoS Biology, 2020, 18, e3000903.	5.6	22
20	Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genetics, 2020, 16, e1009084.	3.5	29
21	Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. ELife, 2020, 9, .	6.0	15
22	Diverse roles for CDKâ€associated activity during spermatogenesis. FEBS Letters, 2019, 593, 2925-2949.	2.8	29
23	CDK2 regulates the NRF1/Ehmt1 axis during meiotic prophase I. Journal of Cell Biology, 2019, 218, 2896-2918.	5.2	10
24	CDK2 kinase activity is a regulator of male germ cell fate. Development (Cambridge), 2019, 146, .	2.5	15
25	The three cytokines IL- $1\hat{l}^2$, IL-18, and IL- $1\hat{l}^\pm$ share related but distinct secretory routes. Journal of Biological Chemistry, 2019, 294, 8325-8335.	3.4	52
26	Discovery of a chemical probe for PRDM9. Nature Communications, 2019, 10, 5759.	12.8	24
27	Premature activation of Cdk1 leads to mitotic events in S phase and embryonic lethality. Oncogene, 2019, 38, 998-1018.	5.9	56
28	Modulation of Protein-Interaction States through the Cell Cycle. Cell, 2018, 173, 1481-1494.e13.	28.9	116
29	Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science, 2018, 359, 1170-1177.	12.6	161
30	Dual roles of TRF1 in tethering telomeres to the nuclear envelope and protecting them from fusion during meiosis. Cell Death and Differentiation, 2018, 25, 1174-1188.	11.2	48
31	Loss of cyclin-dependent kinase 1 impairs bone formation, but does not affect the bone-anabolic effects of parathyroid hormone. Journal of Biological Chemistry, 2018, 293, 19387-19399.	3.4	13
32	Metabolic Remodeling during Liver Regeneration. Developmental Cell, 2018, 47, 425-438.e5.	7.0	86
33	Genetic and pharmacological inhibition of Cdk1 provides neuroprotection towards ischemic neuronal death. Cell Death Discovery, 2018, 4, 43.	4.7	16
34	Abstract 4303: Modulation of protein interaction states through the cell cycle. , 2018, , .		1
35	Loss of Cyclin-dependent Kinase 2 in the Pancreas Links Primary \hat{l}^2 -Cell Dysfunction to Progressive Depletion of \hat{l}^2 -Cell Mass and Diabetes. Journal of Biological Chemistry, 2017, 292, 3841-3853.	3.4	41
36	MASTL is essential for anaphase entry of proliferating primordial germ cells and establishment of female germ cells in mice. Cell Discovery, 2017, 3, 16052.	6.7	5

#	Article	IF	Citations
37	Cyclin-Dependent Kinase-Dependent Phosphorylation of Sox2 at Serine 39 Regulates Neurogenesis. Molecular and Cellular Biology, 2017, 37, .	2.3	18
38	Speedy A–Cdk2 binding mediates initial telomere–nuclear envelope attachment during meiotic prophase I independent of Cdk2 activation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 592-597.	7.1	58
39	NF- <i>β</i> B as a Potential Molecular Target for Therapy of Gastrointestinal Cancers. , 2017, , 189-212.		1
40	CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays. American Journal of Human Genetics, 2017, 101, 391-403.	6.2	35
41	Emi2 Is Essential for Mouse Spermatogenesis. Cell Reports, 2017, 20, 697-708.	6.4	45
42	Cell size control – a mechanism for maintaining fitness and function. BioEssays, 2017, 39, 1700058.	2.5	51
43	Quo Vadis Cell Growth and Division?. Frontiers in Cell and Developmental Biology, 2016, 4, 95.	3.7	9
44	Impairing Cohesin Smc1/3 Head Engagement Compensates for the Lack of Eco1 Function. Structure, 2016, 24, 1991-1999.	3.3	23
45	Regulation of the Embryonic Cell Cycle During Mammalian Preimplantation Development. Current Topics in Developmental Biology, 2016, 120, 1-53.	2.2	25
46	Cyclin A2 regulates erythrocyte morphology and numbers. Cell Cycle, 2016, 15, 3070-3081.	2.6	8
47	Cdk2 catalytic activity is essential for meiotic cell division <i>in vivo</i> . Biochemical Journal, 2016, 473, 2783-2798.	3.7	28
48	Inhibitory phosphorylation of Cdk1 mediates prolonged prophase I arrest in female germ cells and is essential for female reproductive lifespan. Cell Research, 2016, 26, 1212-1225.	12.0	41
49	The Indispensable Role of Cyclin-Dependent Kinase 1 in Skeletal Development. Scientific Reports, 2016, 6, 20622.	3.3	24
50	The Speedy A, Cdk2, p27 triangle. Cell Cycle, 2016, 15, 489-490.	2.6	1
51	Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genetics, 2016, 12, e1006310.	3.5	32
52	MEN1 tumorigenesis in the pituitary and pancreatic islet requires Cdk4 but not Cdk2. Oncogene, 2015, 34, 932-938.	5.9	35
53	Hematopoiesis specific loss of Cdk2 and Cdk4 results in increased erythrocyte size and delayed platelet recovery following stress. Haematologica, 2015, 100, 431-438.	3.5	23
54	A haploid genetic screen identifies the G ₁ /S regulatory machinery as a determinant of Wee1 inhibitor sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15160-15165.	7.1	50

#	Article	IF	CITATIONS
55	TLR3 agonist and Sorafenib combinatorial therapy promotes immune activation and controls hepatocellular carcinoma progression. Oncotarget, 2015, 6, 27252-27266.	1.8	60
56	Mastl/PP2A regulate Cdk1 in ooycte maturation. Oncotarget, 2015, 6, 18734-18735.	1.8	2
57	The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations. Cancers, 2014, 6, 79-111.	3.7	82
58	IFN-gamma AU-rich element removal promotes chronic IFN-gamma expression and autoimmunity in mice. Journal of Autoimmunity, 2014, 53, 33-45.	6.5	95
59	p27 is regulated independently of Skp2 in the absence of Cdk2. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 436-445.	4.1	13
60	Mastl is required for timely activation of APC/C in meiosis I and Cdk1 reactivation in meiosis II. Journal of Cell Biology, 2014, 206, 843-853.	5.2	31
61	Loss of Cdk2 and Cyclin A2 Impairs Cell Proliferation and Tumorigenesis. Cancer Research, 2014, 74, 3870-3879.	0.9	99
62	Identification of Transcriptional and Metabolic Programs Related to Mammalian Cell Size. Current Biology, 2014, 24, 598-608.	3.9	108
63	p57Kip2 regulates T-cell development and lymphoma. Blood, 2014, 123, 3370-3371.	1.4	2
64	<i>Xenopus</i> Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biology, 2014, 4, 130138.	3.6	31
65	Spy1/SpeedyA accelerates neuroblastoma. Oncotarget, 2014, 5, 6554-6555.	1.8	1
66	Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development (Cambridge), 2013, 140, 3079-3093.	2.5	1,164
67	Cyclin E1 regulates hematopoietic stem cell quiescence. Cell Cycle, 2013, 12, 3588-3588.	2.6	2
68	Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Human Molecular Genetics, 2012, 21, 2476-2484.	2.9	119
69	When cell cycle meets development. Development (Cambridge), 2012, 139, 225-230.	2.5	17
70	Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3826-3831.	7.1	301
71	Glycine Decarboxylase Activity Drives Non-Small Cell Lung Cancer Tumor-Initiating Cells and Tumorigenesis. Cell, 2012, 148, 259-272.	28.9	593
72	Glycine Decarboxylase Activity Drives Non-Small Cell Lung Cancer Tumor-Initiating Cells and Tumorigenesis. Cell, 2012, 148, 1066.	28.9	12

#	Article	IF	CITATIONS
73	Evolution of the Cdk-activator Speedy/RINGO in vertebrates. Cellular and Molecular Life Sciences, 2012, 69, 3835-3850.	5.4	20
74	Loss of Cdk2 and Cdk4 Induces a Switch from Proliferation to Differentiation in Neural Stem Cells. Stem Cells, 2012, 30, 1509-1520.	3.2	71
75	Cdk2-Null Mice Are Resistant to ErbB-2-Induced Mammary Tumorigenesis. Neoplasia, 2011, 13, 439-444.	5.3	23
76	Cell cycle transitions and Cdk inhibition in melanoma therapy: Cyclin' through the options. Cell Cycle, 2011, 10, 1349-1349.	2.6	3
77	Established and Novel Cdk/Cyclin Complexes Regulating the Cell Cycle and Development. Results and Problems in Cell Differentiation, 2011, 53, 365-389.	0.7	63
78	Combination of nutlin-3 and VX-680 selectively targets p53 mutant cells with reversible effects on cells expressing wild-type p53. Cell Death and Differentiation, 2010, 17, 1486-1500.	11.2	57
79	Enforcing the Greatwall in Mitosis. Science, 2010, 330, 1638-1639.	12.6	15
80	Cdk2 and Cdk4 Regulate the Centrosome Cycle and Are Critical Mediators of Centrosome Amplification in p53-Null Cells. Molecular and Cellular Biology, 2010, 30, 694-710.	2.3	81
81	Down-regulation of Myc Is Essential for Terminal Erythroid Maturation. Journal of Biological Chemistry, 2010, 285, 40252-40265.	3.4	63
82	Rb/Cdk2/Cdk4 triple mutant mice elicit an alternative mechanism for regulation of the G ₁ /S transition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 486-491.	7.1	36
83	Cdk2 plays a critical role in hepatocyte cell cycle progression and survival in the setting of cyclin D1 expression in vivo. Cell Cycle, 2009, 8, 2802-2809.	2.6	36
84	Cdk2 and Cdk4 Activities Are Dispensable for Tumorigenesis Caused by the Loss of p53. Molecular and Cellular Biology, 2009, 29, 2582-2593.	2.3	30
85	Genetic mouse models to investigate cell cycle regulation. Transgenic Research, 2009, 18, 491-498.	2.4	6
86	A dual role of Cdk2 in DNA damage response. Cell Division, 2009, 4, 9.	2.4	57
87	Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene, 2009, 28, 2925-2939.	5.9	650
88	Wnt Signaling in Mitosis. Developmental Cell, 2009, 17, 749-750.	7.0	48
89	The Metastasis-Associated Gene Prl-3 Is a p53 Target Involved in Cell-Cycle Regulation. Molecular Cell, 2008, 30, 303-314.	9.7	104
90	Cyclin-dependent kinase 2 signaling regulates myocardial ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2008, 45, 610-616.	1.9	23

#	Article	IF	Citations
91	p21 Inhibits $Cdk1$ in the Absence of $Cdk2$ to Maintain the $G1/S$ Phase DNA Damage Checkpoint. Molecular Biology of the $Cell$, 2008, 19, 65-77.	2.1	129
92	Degradation of BRCA2 in Alkyltransferase-Mediated DNA Repair and Its Clinical Implications. Cancer Research, 2008, 68, 9973-9981.	0.9	19
93	Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development (Cambridge), 2008, 135, 3389-3400.	2.5	62
94	A Novel Function for Cyclin E in Cell Cycle Progression. , 2008, , 31-39.		0
95	Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. Journal of Cell Biology, 2007, 179, 1231-1245.	5. 2	82
96	p27kip1 (Cyclin-Dependent Kinase Inhibitor 1B) Controls Ovarian Development by Suppressing Follicle Endowment and Activation and Promoting Follicle Atresia in Mice. Molecular Endocrinology, 2007, 21, 2189-2202.	3.7	126
97	Hematopoiesis and Thymic Apoptosis Are Not Affected by the Loss of Cdk2. Molecular and Cellular Biology, 2007, 27, 5079-5089.	2.3	26
98	Another Piece of the p27Kip1 Puzzle. Cell, 2007, 128, 241-244.	28.9	65
99	Kinase-Independent Function of Cyclin E. Molecular Cell, 2007, 25, 127-139.	9.7	161
100	CDK2 is Dispensable for Adult Hippocampal Neurogenesis. Cell Cycle, 2007, 6, 3065-3069.	2.6	24
101	Cell-specific responses to loss of cyclin-dependent kinases. Oncogene, 2007, 26, 4469-4477.	5.9	85
102	Loss of centrosome integrity induces p38â€"p53â€"p21-dependent G1â€"S arrest. Nature Cell Biology, 2007, 9, 160-170.	10.3	276
103	Mouse Models of Cell Cycle Regulators: New Paradigms. , 2006, 42, 271-328.		20
104	p205, A potential tumor suppressor, inhibits cell proliferation via multiple pathways of cell cycle regulation. FEBS Letters, 2006, 580, 1205-1214.	2.8	27
105	Combined Loss of Cdk2 and Cdk4 Results in Embryonic Lethality and Rb Hypophosphorylation. Developmental Cell, 2006, 10, 563-573.	7.0	141
106	Cell Division, a new open access online forum for and from the cell cycle community. , 2006, $1,1.$		19
107	Cdk2 and Cdk4 cooperatively control the expression of Cdc2. Cell Division, 2006, 1, 10.	2.4	35
108	CDK2 Is Required By MYC to Induce Apoptosis. Cell Cycle, 2006, 5, 1342-1347.	2.6	19

#	Article	IF	CITATIONS
109	IL-7 promotes T cell proliferation through destabilization of p27Kip1. Journal of Experimental Medicine, 2006, 203, 573-582.	8.5	85
110	Identification of Yin-Yang Regulators and a Phosphorylation Consensus for Male Germ Cell-Associated Kinase (MAK)-Related Kinase. Molecular and Cellular Biology, 2006, 26, 8639-8654.	2.3	76
111	Dependence of Cisplatin-Induced Cell Death In Vitro and In Vivo on Cyclin-Dependent Kinase 2. Journal of the American Society of Nephrology: JASN, 2006, 17, 2434-2442.	6.1	90
112	PRKAR1A Inactivation Leads to Increased Proliferation and Decreased Apoptosis in Human B Lymphocytes. Cancer Research, 2006, 66, 10603-10612.	0.9	35
113	IL-7 promotes T cell proliferation through destabilization of p27Kip1. Journal of Cell Biology, 2006, 172, i12-i12.	5.2	0
114	Lymphatic dysfunction in transgenic mice expressing KSHV k-cyclin under the control of the VEGFR-3 promoter. Blood, 2005, 105, 2356-2363.	1.4	35
115	Cdc2–cyclin E complexes regulate the G1/S phase transition. Nature Cell Biology, 2005, 7, 831-836.	10.3	345
116	Biochemical characterization of Cdk2-Speedy/Ringo A2. BMC Biochemistry, 2005, 6, 19.	4.4	29
117	Activation of a Nuclear Cdc2-Related Kinase within a Mitogen-Activated Protein Kinase-Like TDY Motif by Autophosphorylation and Cyclin-Dependent Protein Kinase-Activating Kinase. Molecular and Cellular Biology, 2005, 25, 6047-6064.	2.3	65
118	The N-terminal Peptide of the Kaposi's Sarcoma-associated Herpesvirus (KSHV)-cyclin Determines Substrate Specificity. Journal of Biological Chemistry, 2005, 280, 11165-11174.	3.4	7
119	Sil Phosphorylation in a Pin1 Binding Domain Affects the Duration of the Spindle Checkpoint. Molecular and Cellular Biology, 2005, 25, 6660-6672.	2.3	40
120	Cell Cycle Sibling Rivalry: Cdc2 Versus Cdk2. Cell Cycle, 2005, 4, 1491-1494.	2.6	82
121	Cdk2 as a Master of S phase Entry: Fact or Fake?. Cell Cycle, 2004, 3, 34-36.	2.6	32
122	Cell Cycle-Dependent Phosphorylation of C/EBPβ Mediates Oncogenic Cooperativity between C/EBPβ and H-Ras V12. Molecular and Cellular Biology, 2004, 24, 7380-7391.	2.3	72
123	Cdk2 as a master of S phase entry: fact or fake?. Cell Cycle, 2004, 3, 35-7.	2.6	14
124	Cdk2 Knockout Mice Are Viable. Current Biology, 2003, 13, 1775-1785.	3.9	623
125	CAK1 Promotes Meiosis and Spore Formation in Saccharomyces cerevisiae in a CDC28 -Independent Fashion. Molecular and Cellular Biology, 2002, 22, 57-68.	2.3	43
126	CAK-independent Activation of CDK6 by a Viral Cyclin. Molecular Biology of the Cell, 2001, 12, 3987-3999.	2.1	46

#	Article	IF	Citations
127	Activating Phosphorylation of the Saccharomyces cerevisiae Cyclin-dependent Kinase, Cdc 28p, Precedes Cyclin Binding. Molecular Biology of the Cell, 2000, 11, 1597-1609.	2.1	38
128	Analysis of CAK activities from human cells. FEBS Journal, 2000, 267, 4213-4221.	0.2	48
129	The Effects of Changing the Site of Activating Phosphorylation in CDK2 from Threonine to Serine. Journal of Biological Chemistry, 2000, 275, 32578-32584.	3.4	17
130	Dephosphorylation of Human Cyclin-dependent Kinases by Protein Phosphatase Type $2C\hat{l}\pm$ and \hat{l}^22 Isoforms. Journal of Biological Chemistry, 2000, 275, 34744-34749.	3.4	90
131	Kinetic Analysis of the Cyclin-dependent Kinase-activating Kinase (Cak1p) from Budding Yeast. Journal of Biological Chemistry, 2000, 275, 33267-33271.	3.4	11
132	The CDK-activating Kinase (Cak1p) from Budding Yeast Has an Unusual ATP-binding Pocket. Journal of Biological Chemistry, 1999, 274, 1949-1956.	3.4	18
133	Transforming growth factor \hat{l}^2 targeted inactivation of cyclin E:cyclin-dependent kinase 2 (Cdk2) complexes by inhibition of Cdk2 activating kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14961-14966.	7.1	97
134	The cdk-activating kinase (CAK): from yeast to mammals. Cellular and Molecular Life Sciences, 1999, 55, 284-296.	5.4	200
135	Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes and Development, 1999, 13, 2946-2957.	5.9	146
136	Activating Phosphorylation of the Kin28p Subunit of Yeast TFIIH by Cak1p. Molecular and Cellular Biology, 1999, 19, 4774-4787.	2.3	49
137	Human and Yeast Cdk-activating Kinases (CAKs) Display Distinct Substrate Specificities. Molecular Biology of the Cell, 1998, 9, 2545-2560.	2.1	102
138	Regulation of CDKs by phosphorylation. Results and Problems in Cell Differentiation, 1998, 22, 79-109.	0.7	50
139	Functions of Creatine Kinase Isoenzymes in Spermatozoa. Advances in Developmental Biology (1992), 1997, , 275-312.	1.1	24
140	The Cdk-Activating Kinase (CAK) from Budding Yeast. Cell, 1996, 86, 553-564.	28.9	219
141	'Hot Spots' of Creatine Kinase Localization in Brain: Cerebellum, Hippocampus and Choroid Plexus. Developmental Neuroscience, 1996, 18, 542-554.	2.0	89
142	The N-terminal heptapeptide of mitochondrial creatine kinase is important for octamerization. Biochemistry, 1994, 33, 952-959.	2.5	44
143	In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. Journal of Biological Chemistry, 1994, 269, 27640-4.	3.4	79