
Anthony C Faber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5863493/publications.pdf Version: 2024-02-01

ANTHONY C FARED

#	Article	IF	CITATIONS
1	Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nature Medicine, 2016, 22, 262-269.	30.7	768
2	Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science, 2014, 346, 1480-1486.	12.6	635
3	The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics. Cancer Discovery, 2015, 5, 475-487.	9.4	501
4	Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. Journal of Clinical Investigation, 2008, 118, 2609-19.	8.2	443
5	Synthetic Lethal Interaction of Combined BCL-XL and MEK Inhibition Promotes Tumor Regressions in KRAS Mutant Cancer Models. Cancer Cell, 2013, 23, 121-128.	16.8	343
6	Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19503-19508.	7.1	286
7	BIM Expression in Treatment-NaÃ ⁻ ve Cancers Predicts Responsiveness to Kinase Inhibitors. Cancer Discovery, 2011, 1, 352-365.	9.4	268
8	An ErbB3 Antibody, MM-121, Is Active in Cancers with Ligand-Dependent Activation. Cancer Research, 2010, 70, 2485-2494.	0.9	250
9	PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21124-21129.	7.1	175
10	Measurement of PIP3 Levels Reveals an Unexpected Role for p110β in Early Adaptive Responses to p110α-Specific Inhibitors in Luminal Breast Cancer. Cancer Cell, 2015, 27, 97-108.	16.8	165
11	Epithelial-to-Mesenchymal Transition Defines Feedback Activation of Receptor Tyrosine Kinase Signaling Induced by MEK Inhibition in <i>KRAS</i> -Mutant Lung Cancer. Cancer Discovery, 2016, 6, 754-769.	9.4	132
12	TORC1 Suppression Predicts Responsiveness to RAF and MEK Inhibition in <i>BRAF-</i> Mutant Melanoma. Science Translational Medicine, 2013, 5, 196ra98.	12.4	124
13	mTOR Inhibition Specifically Sensitizes Colorectal Cancers with <i>KRAS</i> or <i>BRAF</i> Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1. Cancer Discovery, 2014, 4, 42-52.	9.4	116
14	Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1288-96.	7.1	110
15	Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell, 2016, 29, 159-172.	16.8	104
16	Activation of PI3K Signaling in Merkel Cell Carcinoma. Clinical Cancer Research, 2012, 18, 1227-1236.	7.0	97
17	Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression. Clinical Cancer Research, 2018, 24, 360-369.	7.0	96
18	Clearance of therapyâ€induced senescent tumor cells by the senolytic ABTâ€263 via interference with BCLâ€X _L –BAX interaction. Molecular Oncology, 2020, 14, 2504-2519.	4.6	90

ANTHONY C FABER

#	Article	IF	CITATIONS
19	Concomitant BRAF and PI3K/mTOR Blockade Is Required for Effective Treatment of <i>BRAFV600E</i> Colorectal Cancer. Clinical Cancer Research, 2013, 19, 2688-2698.	7.0	76
20	Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted Therapies in Lung Cancer by Suppressing BIM. Clinical Cancer Research, 2018, 24, 197-208.	7.0	74
21	<i>MYCN</i> -Amplified Neuroblastoma Is Addicted to Iron and Vulnerable to Inhibition of the System Xc-/Glutathione Axis. Cancer Research, 2021, 81, 1896-1908.	0.9	73
22	Gastrointestinal Stromal Tumors: The GIST of Precision Medicine. Trends in Cancer, 2018, 4, 74-91.	7.4	71
23	Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma. Science Translational Medicine, 2018, 10, .	12.4	70
24	Failure to Induce Apoptosis via BCL-2 Family Proteins Underlies Lack of Efficacy of Combined MEK and PI3K Inhibitors for KRAS-Mutant Lung Cancers. Cancer Research, 2014, 74, 3146-3156.	0.9	69
25	Inhibition of phosphatidylinositol 3-kinase-mediated glucose metabolism coincides with resveratrol-induced cell cycle arrest in human diffuse large B-cell lymphomas. Biochemical Pharmacology, 2006, 72, 1246-1256.	4.4	67
26	Therapeutically targeting tumor microenvironment–mediated drug resistance in estrogen receptor–positive breast cancer. Journal of Experimental Medicine, 2018, 215, 895-910.	8.5	63
27	Apoptosis In Targeted Therapy Responses. Advances in Pharmacology, 2012, 65, 519-542.	2.0	58
28	Thematic Review Series: Sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a. Journal of Lipid Research, 2008, 49, 929-938.	4.2	48
29	Differences underlying EGFR and HER2 oncogene addiction. Cell Cycle, 2010, 9, 851-852.	2.6	39
30	Increased Synthesis of MCL-1 Protein Underlies Initial Survival of <i>EGFR</i> -Mutant Lung Cancer to EGFR Inhibitors and Provides a Novel Drug Target. Clinical Cancer Research, 2018, 24, 5658-5672.	7.0	38
31	Inhibition of Cyclin-dependent Kinase-2 Induces Apoptosis in Human Diffuse Large B-cell Lymphomas. Cell Cycle, 2007, 6, 2982-2989.	2.6	37
32	Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6-dependent survival pathways. ELife, 2015, 4, .	6.0	37
33	Combination PI3K/MEK inhibition promotes tumor apoptosis and regression in PIK3CA wild-type, KRAS mutant colorectal cancer. Cancer Letters, 2014, 347, 204-211.	7.2	36
34	Classification of gastrointestinal stromal tumor syndromes. Endocrine-Related Cancer, 2018, 25, R49-R58.	3.1	31
35	Distinct dependencies on receptor tyrosine kinases in the regulation of MAPK signaling between BRAF V600E and non-V600E mutant lung cancers. Oncogene, 2018, 37, 1775-1787.	5.9	28
36	The Ewing Family of Tumors Relies on BCL-2 and BCL-XL to Escape PARP Inhibitor Toxicity. Clinical Cancer Research, 2019, 25, 1664-1675.	7.0	26

ANTHONY C FABER

#	Article	IF	CITATIONS
37	Coamplification of <i>miR-4728</i> protects <i>HER2</i> -amplified breast cancers from targeted therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2594-E2603.	7.1	23
38	Epithelial-to-mesenchymal transition and drug resistance: transitioning away from death. Journal of Thoracic Disease, 2019, 11, E82-E85.	1.4	21
39	Prognostic Factors of Malignant Pheochromocytoma and Paraganglioma: A Combined SEER and TCGA Databases Review. Hormone and Metabolic Research, 2019, 51, 451-457.	1.5	20
40	Androgen-deprivation induced senescence in prostate cancer cells is permissive for the development of castration-resistance but susceptible to senolytic therapy. Biochemical Pharmacology, 2021, 193, 114765.	4.4	20
41	Not just g RAS ping at flaws: Finding vulnerabilities to develop novel therapies for treating KRAS mutant cancers. Cancer Science, 2014, 105, 499-505.	3.9	19
42	BCL-2 inhibition is a promising therapeutic strategy for small cell lung cancer. Oncoscience, 2018, 5, 218-219.	2.2	19
43	Lack of Association between the BIM Deletion Polymorphism and the Risk of Lung Cancer with and without EGFR Mutations. Journal of Thoracic Oncology, 2015, 10, 59-66.	1.1	13
44	NOTCH1 Represses MCL-1 Levels in GSI-resistant T-ALL, Making them Susceptible to ABT-263. Clinical Cancer Research, 2019, 25, 312-324.	7.0	11
45	Targeting transcription of MCL-1 sensitizes HER2-amplified breast cancers to HER2 inhibitors. Cell Death and Disease, 2021, 12, 179.	6.3	11
46	Catastrophic ATP loss underlies a metabolic combination therapy tailored for <i>MYCN</i> -amplified neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
47	Venetoclax-based Rational Combinations are Effective in Models of <i>MYCN</i> -amplified Neuroblastoma. Molecular Cancer Therapeutics, 2021, 20, 1400-1411.	4.1	10
48	Pharmaceutical Interference of the EWS-FLI1–driven Transcriptome By Cotargeting H3K27ac and RNA Polymerase Activity in Ewing Sarcoma. Molecular Cancer Therapeutics, 2021, 20, 1868-1879.	4.1	8
49	Unmasking BCL-2 Addiction in Synovial Sarcoma by Overcoming Low NOXA. Cancers, 2021, 13, 2310.	3.7	6
50	Paragangliomas in Carney–Stratakis Syndrome. Hormone and Metabolic Research, 2019, 51, 437-442.	1.5	5
51	MYCN upregulates the transsulfuration pathway to suppress the ferroptotic vulnerability in MYCN-amplified neuroblastoma. Cell Stress, 2022, 6, 21-29.	3.2	5
52	Investigating New Mechanisms of Acquired Resistance to Targeted Therapies: If You Hit Them Harder, Do They Get Up Differently?. Cancer Research, 2020, 80, 25-26.	0.9	4
53	Targetable immune checkpoint molecules may be significantly differentially expressed in minority ethnicities Journal of Clinical Oncology, 2020, 38, 3576-3576.	1.6	4
54	OVOL2 in metastasis prevention in NPC. Theranostics, 2018, 8, 2242-2244.	10.0	3

ANTHONY C FABER

#	Article	IF	CITATIONS
55	Evaluation of combined BCL-2/MCL-1 inhibition as a therapeutic approach for synovial sarcoma Journal of Clinical Oncology, 2020, 38, e23561-e23561.	1.6	2
56	An expanding role for osimertinib for the treatment of ErbB family driven NSCLC. Translational Cancer Research, 2018, 7, S787-S791.	1.0	1
57	Tumor mutation burden and PD-L1 expression in SDH/FH mutated solid tumors Journal of Clinical Oncology, 2019, 37, 1524-1524.	1.6	1
58	One gene to rule them all…and in the darkness bind them. Molecular and Cellular Oncology, 2018, 5, e1465881.	0.7	0
59	Resveratrol Induces Cell Cycle Arrest in the OCI-LY18 B-Cell Lymphoma Blood, 2005, 106, 4680-4680.	1.4	0
60	Abstract A062: Sensitizing low BIM expressing breast cancers to targeted therapies. , 2013, , .		0
61	Sensitivity and Resistance to BH3 Mimetics in Cancer Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 147-180.	0.1	0