Kurt A Gust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5862524/publications.pdf

Version: 2024-02-01

516710 610901 42 697 16 24 citations h-index g-index papers 42 42 42 810 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Effect of UV-light exposure duration, light source, and aging on nitroguanidine (NQ) degradation product profile and toxicity. Science of the Total Environment, 2022, 823, 153554.	8.0	3
2	Chronic aquatic toxicity of perfluorooctane sulfonic acid (PFOS) to Ceriodaphnia dubia, Chironomus dilutus, Danio rerio, and Hyalella azteca. Ecotoxicology and Environmental Safety, 2022, 241, 113838.	6.0	8
3	Perfluorooctanesulfonic Acid–Induced Toxicity on Zebrafish Embryos in the Presence or Absence of the Chorion. Environmental Toxicology and Chemistry, 2021, 40, 780-791.	4. 3	16
4	Genomic investigations of acute munitions exposures on the health and skin microbiome composition of leopard frog (Rana pipiens) tadpoles. Environmental Research, 2021, 192, 110245.	7.5	8
5	Multi-species Aquatic Toxicity Assessment of 1-Methyl-3-Nitroguanidine (MeNQ). Archives of Environmental Contamination and Toxicology, 2021, 80, 426-436.	4.1	2
6	Mode of action evaluation for reduced reproduction in Daphnia pulex exposed to the insensitive munition, 1-methyl-3-nitro-1-nitroguanidine (MeNQ). Ecotoxicology, 2021, 30, 1203-1215.	2.4	4
7	Identifying degradation products responsible for increased toxicity of UV-Degraded insensitive munitions. Chemosphere, 2020, 240, 124958.	8.2	13
8	Example of Adverse Outcome Pathway Concept Enabling Genome-to-Phenome Discovery in Toxicology. Integrative and Comparative Biology, 2020, 60, 375-384.	2.0	5
9	Comparative Toxicological Evaluation of UVâ€Degraded versus Parentâ€Insensitive Munition Compound 1â€Methylâ€3â€Nitroguanidine in Fathead Minnow. Environmental Toxicology and Chemistry, 2020, 39, 612-622.	4.3	7
10	Different as night and day: Behavioural and life history responses to varied photoperiods in <i>Daphnia magna</i> . Molecular Ecology, 2019, 28, 4422-4438.	3.9	12
11	Molecular Evaluation of Impacted Reproductive Physiology in Fathead Minnow Testes Provides Mechanistic Insights into Insensitive Munitions Toxicology. Aquatic Toxicology, 2019, 213, 105204.	4.0	3
12	Transcriptomics provides mechanistic indicators of mixture toxicology for IMX-101 and IMX-104 formulations in fathead minnows (Pimephales promelas). Aquatic Toxicology, 2018, 199, 138-151.	4.0	17
13	Multiple environmental stressors induce complex transcriptomic responses indicative of phenotypic outcomes in Western fence lizard. BMC Genomics, 2018, 19, 877.	2.8	8
14	Comparative toxicogenomics of three insensitive munitions constituents 2,4-dinitroanisole, nitroguanidine and nitrotriazolone in the soil nematode Caenorhabditis elegans. BMC Systems Biology, 2018, 12, 92.	3.0	7
15	Subchronic, chronic, lethal and sublethal toxicity of insensitive munitions mixture formulations relative to individual constituents in Hyalella azteca. Chemosphere, 2018, 210, 795-804.	8.2	15
16	Aquatic toxicity of photoâ€degraded insensitive munition 101 (IMXâ€101) constituents. Environmental Toxicology and Chemistry, 2017, 36, 2050-2057.	4.3	35
17	The increased toxicity of UV-degraded nitroguanidine and IMX-101 to zebrafish larvae: Evidence implicating oxidative stress. Aquatic Toxicology, 2017, 190, 228-245.	4.0	20
18	Limitations of toxicity characterization in life cycle assessment: Can adverse outcome pathways provide a new foundation?. Integrated Environmental Assessment and Management, 2016, 12, 580-590.	2.9	17

#	Article	IF	Citations
19	Daphnia magna's sense of competition: intra-specific interactions (ISI) alter life history strategies and increase metals toxicity. Ecotoxicology, 2016, 25, 1126-1135.	2.4	10
20	A weight of evidence assessment approach for adverse outcome pathways. Regulatory Toxicology and Pharmacology, 2016, 75, 46-57.	2.7	41
21	Relating suborganismal processes to ecotoxicological and population level endpoints using a bioenergetic model. Ecological Applications, 2015, 25, 1691-1710.	3.8	20
22	Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in <i>Rana pipiens</i> tadpoles. Environmental Toxicology and Chemistry, 2015, 34, 880-886.	4.3	11
23	Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in <i>Rana pipiens</i> tadpoles. Environmental Toxicology and Chemistry, 2015, 34, 873-879.	4.3	34
24	Systems toxicology identifies mechanistic impacts of 2-amino-4,6-dinitrotoluene (2A-DNT) exposure in Northern Bobwhite. BMC Genomics, 2015, 16, 587.	2.8	9
25	Validation of a Genomics-Based Hypothetical Adverse Outcome Pathway: 2,4-Dinitrotoluene Perturbs PPAR Signaling Thus Impairing Energy Metabolism and Exercise Endurance. Toxicological Sciences, 2014, 141, 44-58.	3.1	22
26	Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress. BMC Genomics, 2014, 15, 591.	2.8	27
27	Interspecific effects of 4A-DNT (4-amino-2,6-dinitrotoluene) and RDX (1,3,5-trinitro-1,3,5-triazine) in Japanese quail, Northern bobwhite, and Zebra finch. Ecotoxicology, 2013, 22, 231-239.	2.4	5
28	Multiple environmental stressors elicit complex interactive effects in the western fence lizard (Sceloporus occidentalis). Ecotoxicology, 2012, 21, 2372-2390.	2.4	17
29	A Systems Toxicology Approach to Elucidate the Mechanisms Involved in RDX Species-Specific Sensitivity. Environmental Science & Echnology, 2012, 46, 7790-7798.	10.0	21
30	CAPRG: Sequence Assembling Pipeline for Next Generation Sequencing of Non-Model Organisms. PLoS ONE, 2012, 7, e30370.	2.5	4
31	Effects of C ₆₀ on the <i>Salmonella typhimurium</i> TA100 transcriptome expression: Insights into C ₆₀ â€mediated growth inhibition and mutagenicity. Environmental Toxicology and Chemistry, 2012, 31, 1438-1444.	4.3	12
32	Investigations of transcript expression in fathead minnow (Pimephales promelas) brain tissue reveal toxicological impacts of RDX exposure. Aquatic Toxicology, 2011, 101, 135-145.	4.0	20
33	Conserved toxic responses across divergent phylogenetic lineages: a meta-analysis of the neurotoxic effects of RDX among multiple species using toxicogenomics. Ecotoxicology, 2011, 20, 580-594.	2.4	34
34	Genomic investigation of yearâ€long and multigenerational exposures of fathead minnow to the munitions compound RDX. Environmental Toxicology and Chemistry, 2011, 30, 1852-1864.	4.3	11
35	Quail Genomics: a knowledgebase for Northern bobwhite. BMC Bioinformatics, 2010, 11, S13.	2.6	14
36	From raw materials to validated system: the construction of a genomic library and microarray to interpret systemic perturbations in Northern bobwhite. Physiological Genomics, 2010, 42, 219-235.	2.3	55

#	Article	IF	CITATIONS
37	Neurotoxicogenomic Investigations to Assess Mechanisms of Action of the Munitions Constituents RDX and 2,6-DNT in Northern Bobwhite (Colinus virginianus). Toxicological Sciences, 2009, 110, 168-180.	3.1	34
38	Toxicogenomic assessment of the population level impacts of contaminants. Integrated Environmental Assessment and Management, 2007, 3, 562-564.	2.9	1
39	Mixtures of metals and polynuclear aromatic hydrocarbons elicit complex, nonadditive toxicological interactions in meiobenthic copepods. Environmental Toxicology and Chemistry, 2007, 26, 1677-1685.	4.3	43
40	SUBACUTE TOXICITY OF ORAL 2,6-DINITROTOLUENE AND 1,3,5-TRINITRO-1,3,5-TRIAZINE (RDX) EXPOSURE TO THE NORTHERN BOBWHITE (COLINUS VIRGINIANUS). Environmental Toxicology and Chemistry, 2007, 26, 1481.	4.3	25
41	EFFECTS OF SUBCHRONIC EXPOSURE TO 2,6-DINITROTOLUENE IN THE NORTHERN BOBWHITE (COLINUS) TJ ET	Qq1 _{.3} 1 0.7	84314 rgBT
42	Exposure to Cadmium-Phenanthrene Mixtures Elicits Complex Toxic Responses in the Freshwater Tubificid Oligochaete, Ilyodrilus templetoni. Archives of Environmental Contamination and Toxicology, 2006, 51, 54-60.	4.1	14