Bradley L Pentelute

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5861801/publications.pdf

Version: 2024-02-01

111 5,962 37 71 papers citations h-index g-index

131 131 131 6440 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Automated Flow Synthesis of Peptide–PNA Conjugates. ACS Central Science, 2022, 8, 205-213.	11.3	17
2	Rapid de novo discovery of peptidomimetic affinity reagents for human angiotensin converting enzyme 2. Communications Chemistry, 2022, 5, .	4.5	7
3	Cell-Penetrating <scp>d</scp> -Peptides Retain Antisense Morpholino Oligomer Delivery Activity. ACS Bio & Med Chem Au, 2022, 2, 150-160.	3.7	5
4	Total synthesis of himastatin. Science, 2022, 375, 894-899.	12.6	16
5	Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2+ DRG sensory neurons. Nature Neuroscience, 2022, 25, 168-179.	14.8	20
6	Palladium-Mediated Incorporation of Carboranes into Small Molecules, Peptides, and Proteins. Journal of the American Chemical Society, 2022, 144, 7852-7860.	13.7	10
7	Palladium Mediated Synthesis of Protein–Polyarene Conjugates. Journal of the American Chemical Society, 2022, 144, 11706-11712.	13.7	4
8	Identification of N-Terminally Diversified GLP-1R Agonists Using Saturation Mutagenesis and Chemical Design. ACS Chemical Biology, 2021, 16, 58-66.	3.4	5
9	<i>De Novo</i> Discovery of High-Affinity Peptide Binders for the SARS-CoV-2 Spike Protein. ACS Central Science, 2021, 7, 156-163.	11.3	69
10	A reactive peptide interface for site-selective cysteine bioconjugation. Chemical Communications, 2021, 57, 3227-3230.	4.1	5
11	Targeting Glioblastoma Using a Novel Peptide Specific to a Deglycosylated Isoform of Brevican. Advanced Therapeutics, 2021, 4, 2000244.	3.2	11
12	Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nature Medicine, 2021, 27, 515-525.	30.7	248
13	lgG-Engineered Protective Antigen for Cytosolic Delivery of Proteins into Cancer Cells. ACS Central Science, 2021, 7, 365-378.	11.3	8
14	Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein. PLoS ONE, 2021, 16, e0250780.	2.5	66
15	Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angewandte Chemie - International Edition, 2021, 60, 12109-12115.	13.8	18
16	Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents. Angewandte Chemie, 2021, 133, 12216-12222.	2.0	4
17	Selective Nâ€Arylation of p â€Aminophenylalanine in Unprotected Peptides with Organometallic Palladium Reagents. Angewandte Chemie, 2021, 133, 17065-17068.	2.0	3
18	Selective Nâ€Arylation of <i>p</i> â€Aminophenylalanine in Unprotected Peptides with Organometallic Palladium Reagents. Angewandte Chemie - International Edition, 2021, 60, 16928-16931.	13.8	9

#	Article	IF	CITATIONS
19	Fully automated fast-flow synthesis of antisense phosphorodiamidate morpholino oligomers. Nature Communications, 2021, 12, 4396.	12.8	24
20	Engineering Bioactive Dimeric Transcription Factor Analogs via Palladium Rebound Reagents. Journal of the American Chemical Society, 2021, 143, 11788-11798.	13.7	18
21	An in vivo selection-derived $\langle scp \rangle d \langle scp \rangle$ -peptide for engineering erythrocyte-binding antigens that promote immune tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
22	Deep learning to design nuclear-targeting abiotic miniproteins. Nature Chemistry, 2021, 13, 992-1000.	13.6	36
23	Parallel Automated Flow Synthesis of Covalent Protein Complexes That Can Inhibit MYC-Driven Transcription. ACS Central Science, 2021, 7, 1408-1418.	11.3	17
24	Automated affinity selection for rapid discovery of peptide binders. Chemical Science, 2021, 12, 10817-10824.	7.4	10
25	Deep Learning Enables Discovery of a Short Nuclear Targeting Peptide for Efficient Delivery of Antisense Oligomers. Jacs Au, 2021, 1, 2009-2020.	7.9	17
26	DDRE-47. ASSESSMENT OF BRAIN PENETRANCE, BIODISTRIBUTION, AND EFFICACY OF PLATINUM (IV)-CONJUGATED FLUORINATED MACROCYCLIC CELL-PENETRATING PEPTIDES IN A MURINE GLIOBLASTOMA MODEL. Neuro-Oncology, 2021, 23, vi84-vi85.	1.2	0
27	A novel, safe, fast and efficient treatment for Her2â€positive and negative bladder cancer utilizing an EGFâ€anthrax toxin chimera. International Journal of Cancer, 2020, 146, 449-460.	5.1	20
28	Deep Learning for Prediction and Optimization of Fast-Flow Peptide Synthesis. ACS Central Science, 2020, 6, 2277-2286.	11.3	31
29	Palladium–Protein Oxidative Addition Complexes by Amine-Selective Acylation. Journal of the American Chemical Society, 2020, 142, 21237-21242.	13.7	16
30	Discovery of Nucleic Acid Binding Molecules from Combinatorial Biohybrid Nucleobase Peptide Libraries. Journal of the American Chemical Society, 2020, 142, 19642-19651.	13.7	22
31	Protein–Protein Cross-Coupling via Palladium–Protein Oxidative Addition Complexes from Cysteine Residues. Journal of the American Chemical Society, 2020, 142, 9124-9129.	13.7	47
32	Anthrax Protective Antigen Retargeted with Singleâ€Chain Variable Fragments Delivers Enzymes to Pancreatic Cancer Cells. ChemBioChem, 2020, 21, 2772-2776.	2.6	14
33	A Platinum(IV) Prodrug—Perfluoroaryl Macrocyclic Peptide Conjugate Enhances Platinum Uptake in the Brain. Journal of Medicinal Chemistry, 2020, 63, 6741-6747.	6.4	20
34	Conformational Dynamics in Extended RGD-Containing Peptides. Biomacromolecules, 2020, 21, 2786-2794.	5.4	7
35	Synthesis of proteins by automated flow chemistry. Science, 2020, 368, 980-987.	12.6	191
36	Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nature Communications, 2020, 11, 3183.	12.8	73

#	Article	IF	Citations
37	Introduction: Peptide Chemistry. Chemical Reviews, 2020, 120, 3049-3050.	47.7	2
38	Secondary Amino Alcohols: Traceless Cleavable Linkers for Use in Affinity Capture and Release. Angewandte Chemie - International Edition, 2020, 59, 11566-11572.	13.8	9
39	Secondary Amino Alcohols: Traceless Cleavable Linkers for Use in Affinity Capture and Release. Angewandte Chemie, 2020, 132, 11663-11669.	2.0	0
40	Quantifying residue-specific conformational dynamics of a highly reactive 29-mer peptide. Scientific Reports, 2020, 10, 2597.	3.3	6
41	Automated Flow Synthesis of Tumor Neoantigen Peptides for Personalized Immunotherapy. Scientific Reports, 2020, 10, 723.	3.3	21
42	Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism. Nature Structural and Molecular Biology, 2020, 27, 160-167.	8.2	52
43	Targeting Cancer Gene Dependencies with Anthrax-Mediated Delivery of Peptide Nucleic Acids. ACS Chemical Biology, 2020, 15, 1358-1369.	3.4	12
44	Efficient Flow Synthesis of Human Antimicrobial Peptides. Australian Journal of Chemistry, 2020, 73, 380.	0.9	5
45	Studies on a landscape of perfluoroaromatic-reactive peptides. Organic and Biomolecular Chemistry, 2019, 17, 1862-1868.	2.8	7
46	Chimeras of Cell-Penetrating Peptides Demonstrate Synergistic Improvement in Antisense Efficacy. Biochemistry, 2019, 58, 3980-3989.	2.5	12
47	Mutations in <i>pmrB</i> Confer Cross-Resistance between the LptD Inhibitor POL7080 and Colistin in <i>Pseudomonas aeruginosa</i> Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	26
48	In-solution enrichment identifies peptide inhibitors of protein–protein interactions. Nature Chemical Biology, 2019, 15, 410-418.	8.0	58
49	Conformational Stabilization and Rapid Labeling of a 29-Residue Peptide by a Small Molecule Reaction Partner. Biochemistry, 2019, 58, 1343-1353.	2.5	7
50	DDIS-36. BTP-7, A NOVEL PEPTIDE FOR THERAPEUTIC TARGETING OF MALIGNANT BRAIN TUMORS. Neuro-Oncology, 2019, 21, vi71-vi71.	1.2	1
51	Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nature Chemical Biology, 2019, 15, 141-150.	8.0	159
52	Arylation Chemistry for Bioconjugation. Angewandte Chemie - International Edition, 2019, 58, 4810-4839.	13.8	169
53	Arylierungschemie fýr die Biokonjugation. Angewandte Chemie, 2019, 131, 4860-4892.	2.0	39
54	A chemoselective strategy for late-stage functionalization of complex small molecules with polypeptides and proteins. Nature Chemistry, 2019, 11, 78-85.	13.6	75

#	Article	IF	Citations
55	Siteâ€Selective Cysteine–Cyclooctyne Conjugation. Angewandte Chemie, 2018, 130, 6569-6573.	2.0	16
56	Machine Learning To Predict Cell-Penetrating Peptides for Antisense Delivery. ACS Central Science, 2018, 4, 512-520.	11.3	65
57	Palladium Oxidative Addition Complexes for Peptide and Protein Cross-linking. Journal of the American Chemical Society, 2018, 140, 3128-3133.	13.7	93
58	Discovery of a 29-Amino-Acid Reactive Abiotic Peptide for Selective Cysteine Arylation. ACS Chemical Biology, 2018, 13, 527-532.	3.4	18
59	Perfluoroaryl Bicyclic Cellâ€Penetrating Peptides for Delivery of Antisense Oligonucleotides. Angewandte Chemie, 2018, 130, 4846-4849.	2.0	13
60	Siteâ€Selective Cysteine–Cyclooctyne Conjugation. Angewandte Chemie - International Edition, 2018, 57, 6459-6463.	13.8	67
61	Designing Well-Structured Cyclic Pentapeptides Based on Sequence–Structure Relationships. Journal of Physical Chemistry B, 2018, 122, 3908-3919.	2.6	20
62	Amide-forming chemical ligation via $\langle i \rangle O \langle i \rangle$ -acyl hydroxamic acids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3752-3757.	7.1	19
63	Perfluoroaryl Bicyclic Cellâ€Penetrating Peptides for Delivery of Antisense Oligonucleotides. Angewandte Chemie - International Edition, 2018, 57, 4756-4759.	13.8	58
64	12 Pushing the Limits of Solid-Phase Peptide Synthesis with Continuous Flow. , 2018, , .		3
65	Analyzing Dynamic Protein Complexes Assembled On and Released From Biolayer Interferometry Biosensor Using Mass Spectrometry and Electron Microscopy. Journal of Visualized Experiments, 2018,	0.3	4
66	Blood–brain-barrier organoids for investigating the permeability of CNS therapeutics. Nature Protocols, 2018, 13, 2827-2843.	12.0	185
67	Xenoprotein engineering via synthetic libraries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5298-E5306.	7.1	36
68	Structure of HIV TAR in complex with a Lab-Evolved RRM provides insight into duplex RNA recognition and synthesis of a constrained peptide that impairs transcription. Nucleic Acids Research, 2018, 46, 6401-6415.	14.5	27
69	Mucosal absorption of therapeutic peptides by harnessing the endogenous sorting of glycosphingolipids. ELife, 2018, 7, .	6.0	15
70	Antibody–Bactericidal Macrocyclic Peptide Conjugates To Target Gramâ€Negative Bacteria. ChemBioChem, 2018, 19, 2039-2044.	2.6	20
71	Characterization of Novel Piperidine-Based Inhibitor of Cathepsin B-Dependent Bacterial Toxins and Viruses. ACS Infectious Diseases, 2018, 4, 1235-1245.	3.8	5
72	Enhancement of Peptide Vaccine Immunogenicity by Increasing Lymphatic Drainage and Boosting Serum Stability. Cancer Immunology Research, 2018, 6, 1025-1038.	3.4	58

#	Article	IF	CITATIONS
73	Palladiumâ€Mediated Arylation of Lysine in Unprotected Peptides. Angewandte Chemie, 2017, 129, 3225-3229.	2.0	38
74	Palladiumâ€Mediated Arylation of Lysine in Unprotected Peptides. Angewandte Chemie - International Edition, 2017, 56, 3177-3181.	13.8	109
75	A fully automated flow-based approach for accelerated peptide synthesis. Nature Chemical Biology, 2017, 13, 464-466.	8.0	235
76	Substrate Recognition of MARTX Ras/Rap1-Specific Endopeptidase. Biochemistry, 2017, 56, 2747-2757.	2.5	22
77	Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nature Communications, 2017, 8, 15623.	12.8	224
78	Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation. Chemical Science, 2017, 8, 4257-4263.	7.4	98
79	Perfluoroarene–Based Peptide Macrocycles to Enhance Penetration Across the Blood–Brain Barrier. Journal of the American Chemical Society, 2017, 139, 15628-15631.	13.7	60
80	Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry, 2017, 56, 5720-5725.	2.5	10
81	A structural and mechanistic study of π-clamp-mediated cysteine perfluoroarylation. Scientific Reports, 2017, 7, 7954.	3.3	20
82	Library Design-Facilitated High-Throughput Sequencing of Synthetic Peptide Libraries. ACS Combinatorial Science, 2017, 19, 694-701.	3.8	31
83	Water-Soluble Palladium Reagents for Cysteine <i>S</i> -Arylation under Ambient Aqueous Conditions. Organic Letters, 2017, 19, 4263-4266.	4.6	76
84	Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12946-12951.	7.1	85
85	<scp>d</scp> -Amino Acid Scan of Two Small Proteins. Journal of the American Chemical Society, 2016, 138, 12099-12111.	13.7	30
86	Salt Effect Accelerates Site-Selective Cysteine Bioconjugation. ACS Central Science, 2016, 2, 637-646.	11.3	36
87	Editorial overview: Chemistry for biopolymers to investigate and even move beyond nature. Current Opinion in Chemical Biology, 2016, 34, v-vi.	6.1	1
88	Nitrogen Arylation for Macrocyclization of Unprotected Peptides. Journal of the American Chemical Society, 2016, 138, 8340-8343.	13.7	104
89	Systematic Investigation of EDC/sNHS-Mediated Bioconjugation Reactions for Carboxylated Peptide Substrates. Bioconjugate Chemistry, 2016, 27, 994-1004.	3.6	72
90	C-Terminal Modification of Fully Unprotected Peptide Hydrazides via in Situ Generation of Isocyanates. Organic Letters, 2016, 18, 1222-1225.	4.6	20

#	Article	IF	CITATIONS
91	Macrocyclization of Unprotected Peptide Isocyanates. Organic Letters, 2016, 18, 1226-1229.	4.6	20
92	A perfluoroaromatic abiotic analog of H2 relaxin enabled by rapid flow-based peptide synthesis. Organic and Biomolecular Chemistry, 2016, 14, 3345-3349.	2.8	31
93	Ï€-Clamp-mediated cysteine conjugation. Nature Chemistry, 2016, 8, 120-128.	13.6	236
94	A $<$ scp $>$ d $<$ /scp $>$ -Amino Acid at the N-Terminus of a Protein Abrogates Its Degradation by the N-End Rule Pathway. ACS Central Science, 2015, 1, 423-430.	11.3	35
95	Translocation of Non-Canonical Polypeptides into Cells Using Protective Antigen. Scientific Reports, 2015, 5, 11944.	3.3	23
96	An Umpolung Approach for the Chemoselective Arylation of Selenocysteine in Unprotected Peptides. Journal of the American Chemical Society, 2015, 137, 9784-9787.	13.7	65
97	Total synthesis and biochemical characterization of mirror image barnase. Chemical Science, 2015, 6, 2997-3002.	7.4	23
98	Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature, 2015, 521, 545-549.	27.8	217
99	Organometallic palladium reagents for cysteine bioconjugation. Nature, 2015, 526, 687-691.	27.8	377
100	Delivery of mirror image polypeptides into cells. Chemical Science, 2015, 6, 648-653.	7.4	21
101	Flowâ∈Based Enzymatic Ligation by Sortaseâ€A. Angewandte Chemie - International Edition, 2014, 53, 9203-9208.	13.8	64
102	Rapid Flowâ€Based Peptide Synthesis. ChemBioChem, 2014, 15, 713-720.	2.6	136
103	Rapid Total Synthesis of DARPin pE59 and Barnase. ChemBioChem, 2014, 15, 721-733.	2.6	36
104	Enzyme-Catalyzed Macrocyclization of Long Unprotected Peptides. Organic Letters, 2014, 16, 3652-3655.	4.6	39
105	Convergent diversity-oriented side-chain macrocyclization scan for unprotected polypeptides. Organic and Biomolecular Chemistry, 2014, 12, 566-573.	2.8	73
106	Delivery of Antibody Mimics into Mammalian Cells via Anthrax Toxin Protective Antigen. ChemBioChem, 2014, 15, 2458-2466.	2.6	75
107	A Perfluoroaryl-Cysteine S _N Ar Chemistry Approach to Unprotected Peptide Stapling. Journal of the American Chemical Society, 2013, 135, 5946-5949.	13.7	389
108	Monitoring the Kinetics of the pH-Driven Transition of the Anthrax Toxin Prepore to the Pore by Biolayer Interferometry and Surface Plasmon Resonance. Biochemistry, 2013, 52, 6335-6347.	2.5	25

#	Article	IF	CITATIONS
109	Three dimensional structure of the anthrax toxin translocon–lethal factor complex by cryoâ€electron microscopy. Protein Science, 2013, 22, 586-594.	7.6	29
110	Enzymatic "Click―Ligation: Selective Cysteine Modification in Polypeptides Enabled by Promiscuous Glutathione S‶ransferase. Angewandte Chemie - International Edition, 2013, 52, 14001-14005.	13.8	57
111	Protein Thioester Synthesis Enabled by Sortase. Journal of the American Chemical Society, 2012, 134, 10749-10752.	13.7	72