List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5860997/publications.pdf Version: 2024-02-01

LEO FREDI

#	Article	lF	CITATIONS
1	Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal, 2003, 22, 3803-3815.	7.8	1,205
2	Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology (United Kingdom), 2002, 148, 87-102.	1.8	919
3	Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms. Nature Communications, 2015, 6, 5945.	12.8	842
4	Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. Journal of Bacteriology, 1996, 178, 6618-6622.	2.2	737
5	Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 2019, 17, 13-24.	28.6	706
6	The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 2005, 7, 1673-1685.	3.8	554
7	Screening for Quorum-Sensing Inhibitors (QSI) by Use of a Novel Genetic System, the QSI Selector. Journal of Bacteriology, 2005, 187, 1799-1814.	2.2	549
8	Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME Journal, 2012, 6, 1749-1762.	9.8	537
9	Peptidomimetic Antibiotics Target Outer-Membrane Biogenesis in <i>Pseudomonas aeruginosa</i> . Science, 2010, 327, 1010-1013.	12.6	495
10	Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nature Communications, 2016, 7, 11220.	12.8	487
11	Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology (United Kingdom), 2005, 151, 1325-1340.	1.8	425
12	Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant, Cell and Environment, 2006, 29, 909-918.	5.7	420
13	The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology (United Kingdom), 2001, 147, 2517-2528.	1.8	414
14	Ajoene, a Sulfur-Rich Molecule from Garlic, Inhibits Genes Controlled by Quorum Sensing. Antimicrobial Agents and Chemotherapy, 2012, 56, 2314-2325.	3.2	383
15	Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology (United Kingdom), 2005, 151, 3873-3880.	1.8	381
16	N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology (United Kingdom), 2001, 147, 3249-3262.	1.8	358
17	Quorum sensing: the power of cooperation in the world of Pseudomonas. Environmental Microbiology, 2005, 7, 459-471.	3.8	347
18	Plant-Dependent Genotypic and Phenotypic Diversity of Antagonistic Rhizobacteria Isolated from Different Verticillium Host Plants. Applied and Environmental Microbiology, 2002, 68, 3328-3338.	3.1	345

#	Article	IF	CITATIONS
19	Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology, 1996, 20, 127-136.	2.5	344
20	Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environmental Microbiology, 2011, 13, 3047-3058.	3.8	343
21	gfp -Based N -Acyl Homoserine-Lactone Sensor Systems for Detection of Bacterial Communication. Applied and Environmental Microbiology, 2001, 67, 575-585.	3.1	312
22	Two GacA-Dependent Small RNAs Modulate the Quorum-Sensing Response in <i>Pseudomonas aeruginosa</i> . Journal of Bacteriology, 2006, 188, 6026-6033.	2.2	305
23	Microbial landscapes: new paths to biofilm research. Nature Reviews Microbiology, 2007, 5, 76-81.	28.6	288
24	Establishment of New Genetic Traits in a Microbial Biofilm Community. Applied and Environmental Microbiology, 1998, 64, 2247-2255.	3.1	284
25	Members of the genus Burkholderia: good and bad guys. F1000Research, 2016, 5, 1007.	1.6	280
26	Visualization of N -Acylhomoserine Lactone-Mediated Cell-Cell Communication between Bacteria Colonizing the Tomato Rhizosphere. Applied and Environmental Microbiology, 2001, 67, 5761-5770.	3.1	262
27	Regulation of biofilm formation in <scp><i>P</i></scp> <i>seudomonas</i> and <scp><i>B</i></scp> <i>urkholderia</i> species. Environmental Microbiology, 2014, 16, 1961-1981.	3.8	257
28	How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology (United Kingdom), 2000, 146, 3237-3244.	1.8	234
29	Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature, 2019, 576, 452-458.	27.8	231
30	Production of Bioactive Volatiles by Different Burkholderia ambifaria Strains. Journal of Chemical Ecology, 2013, 39, 892-906.	1.8	227
31	Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nature Communications, 2017, 8, 481.	12.8	224
32	Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. Journal of Bacteriology, 1994, 176, 7-14.	2.2	214
33	Impact of Violacein-Producing Bacteria on Survival and Feeding of Bacterivorous Nanoflagellates. Applied and Environmental Microbiology, 2004, 70, 1593-1599.	3.1	209
34	Identification of Proteins Associated with the <i>Pseudomonas aeruginosa</i> Biofilm Extracellular Matrix. Journal of Proteome Research, 2012, 11, 4906-4915.	3.7	198
35	Surface Motility of <i>Serratia liquefaciens</i> MG1. Journal of Bacteriology, 1999, 181, 1703-1712.	2.2	188
36	Identification of Burkholderia pseudomallei Genes Required for the Intracellular Life Cycle and In Vivo Virulence. Infection and Immunity, 2006, 74, 3576-3586.	2.2	185

#	Article	IF	CITATIONS
37	N-Acyl Homoserinelactone-mediated Gene Regulation in Gram-negative Bacteria. Systematic and Applied Microbiology, 1999, 22, 493-506.	2.8	178
38	Soil metaproteomics – Comparative evaluation of protein extraction protocols. Soil Biology and Biochemistry, 2012, 54, 14-24.	8.8	178
39	Influence of Polyphenols on Bacterial Biofilm Formation and Quorum-sensing. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2003, 58, 879-884.	1.4	168
40	In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiology Ecology, 2006, 56, 188-194.	2.7	168
41	Essence of life: essential genes of minimal genomes. Trends in Cell Biology, 2011, 21, 562-568.	7.9	167
42	Discovery of Complex Mixtures of Novel Long-Chain Quorum Sensing Signals in Free-Living and Host-Associated Marine Alphaproteobacteria. ChemBioChem, 2005, 6, 2195-2206.	2.6	166
43	Structure and function of the symbiosis partners of the lung lichen (<i>Lobaria pulmonaria</i> L.) Tj ETQq1 1 0.78	84314 rgB ⁻ 2.2	T /Overlock 1
44	The interâ€kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant Journal, 2014, 80, 758-771.	5.7	162
45	Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology (United Kingdom), 2000, 146, 2481-2493.	1.8	156
46	Biofilm Formation, Extracellular Polysaccharide Production, and Cell-to-Cell Signaling in Various Enterobacter sakazakii Strains: Aspects Promoting Environmental Persistence. Journal of Food Protection, 2005, 68, 2287-2294.	1.7	149
47	Volatile-Mediated Killing of <i>Arabidopsis thaliana</i> by Bacteria Is Mainly Due to Hydrogen Cyanide. Applied and Environmental Microbiology, 2011, 77, 1000-1008.	3.1	148
48	Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15479-15484.	7.1	145
49	Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2004, 150, 831-841.	1.8	144
50	Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. Microbiology (United) Tj ETQq0 0 C) rgBT /Ove	rlock 10 Tf 5 143
51	Identification of quorum-sensing regulated proteins in the opportunistic pathogenPseudomonas aeruginosaby proteomics. Environmental Microbiology, 2003, 5, 1350-1369.	3.8	142
52	Genetic analysis of functions involved in the late stages of biofilm development inBurkholderia cepaciaH111. Molecular Microbiology, 2002, 46, 411-426.	2.5	141
53	An Inhibitor of Bacterial Quorum Sensing Reduces Mortalities Caused by Vibriosis in Rainbow Trout (Oncorhynchus mykiss, Walbaum). Systematic and Applied Microbiology, 2004, 27, 350-359.	2.8	140
54	Synthesis of Multiple N-Acylhomoserine Lactones is Wide-spread Among the Members of the Burkholderia cepacia Complex. Systematic and Applied Microbiology, 2001, 24, 1-14.	2.8	139

#	Article	IF	CITATIONS
55	Quorum Sensing. BioDrugs, 2003, 17, 241-250.	4.6	133
56	Identification and Characterization of an N -Acylhomoserine Lactone-Dependent Quorum-Sensing System in Pseudomonas putida Strain IsoF. Applied and Environmental Microbiology, 2002, 68, 6371-6382.	3.1	131
57	Membrane vesicle-mediated bacterial communication. ISME Journal, 2017, 11, 1504-1509.	9.8	131
58	Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME Journal, 2018, 12, 2307-2321.	9.8	131
59	Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiology Ecology, 2009, 67, 468-478.	2.7	126
60	Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cellular Microbiology, 2003, 5, 343-351.	2.1	123
61	Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4. Journal of Bacteriology, 1995, 177, 52-58.	2.2	122
62	Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon. Journal of Bacteriology, 1996, 178, 554-559.	2.2	118
63	Molecular mechanisms underlying the close association between soil <i>Burkholderia</i> and fungi. ISME Journal, 2016, 10, 253-264.	9.8	118
64	Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. International Journal of Medical Microbiology, 2004, 294, 123-131.	3.6	117
65	Investigations of the structure and function of bacterial communities associated with <i>Sphagnum</i> mosses. Environmental Microbiology, 2007, 9, 2795-2809.	3.8	116
66	Evidence for a plant-associated natural habitat for Cronobacter spp Research in Microbiology, 2009, 160, 608-614.	2.1	115
67	Secondary Metabolites of Flustra foliace a and Their Influence on Bacteria. Applied and Environmental Microbiology, 2003, 69, 3469-3475.	3.1	114
68	Structural and Functional Characterization of Diffusible Signal Factor Family Quorum-Sensing Signals Produced by Members of the <i>Burkholderia cepacia</i> Complex. Applied and Environmental Microbiology, 2010, 76, 4675-4683.	3.1	110
69	Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in <i>Escherichia coli</i> . Science Advances, 2018, 4, eaau2634.	10.3	109
70	Production of the antifungal compound pyrrolnitrin is quorum sensingâ€regulated in members of the <i>Burkholderia cepacia</i> complex. Environmental Microbiology, 2009, 11, 1422-1437.	3.8	106
71	Genusâ€wide acid tolerance accounts for the biogeographical distribution of soil <i>Burkholderia</i> populations. Environmental Microbiology, 2014, 16, 1503-1512.	3.8	105
72	Cystic Fibrosis-Niche Adaptation of Pseudomonas aeruginosa Reduces Virulence in Multiple Infection Hosts. PLoS ONE, 2012, 7, e35648.	2.5	103

#	Article	IF	CITATIONS
73	Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain ofSerratia plymuthica. FEMS Microbiology Letters, 2007, 270, 299-305.	1.8	102
74	Identification of Specific and Universal Virulence Factors in <i>Burkholderia cenocepacia</i> Strains by Using Multiple Infection Hosts. Infection and Immunity, 2009, 77, 4102-4110.	2.2	102
75	Quorum sensing in the genus Burkholderia. International Journal of Medical Microbiology, 2006, 296, 103-110.	3.6	100
76	A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli. Journal of Biological Chemistry, 2016, 291, 1921-1932.	3.4	97
77	Responses to nutrient starvation in Pseudomonas putida KT2442: two-dimensional electrophoretic analysis of starvation- and stress-induced proteins. Journal of Bacteriology, 1994, 176, 4816-4824.	2.2	96
78	Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon flhD. Molecular Microbiology, 1995, 15, 445-454.	2.5	96
79	Genes Involved in <i>Cronobacter sakazakii</i> Biofilm Formation. Applied and Environmental Microbiology, 2010, 76, 2251-2261.	3.1	96
80	Towards the proteome ofBurkholderia cenocepaciaâ€H111: Setting up a 2-DE reference map. Proteomics, 2006, 6, 207-216.	2.2	95
81	High specificity but contrasting biodiversity of <i>Sphagnum</i> -associated bacterial and plant communities in bog ecosystems independent of the geographical region. ISME Journal, 2007, 1, 502-516.	9.8	92
82	Essential genes as antimicrobial targets and cornerstones of synthetic biology. Trends in Biotechnology, 2012, 30, 601-607.	9.3	92
83	Inhibition of Lipopolysaccharide Transport to the Outer Membrane in <i>Pseudomonas aeruginosa</i> by Peptidomimetic Antibiotics. ChemBioChem, 2012, 13, 1767-1775.	2.6	92
84	Analysis of the multimer resolution system encoded by the <i>parCBA</i> operon of broadâ€hostâ€range plasmid RP4. Molecular Microbiology, 1994, 12, 131-141.	2.5	91
85	Biosynthesis of fragin is controlled by a novel quorum sensing signal. Nature Communications, 2018, 9, 1297.	12.8	91
86	Two Separate Regulatory Systems Participate in Control of Swarming Motility of <i>Serratia liquefaciens</i> MG1. Journal of Bacteriology, 1998, 180, 742-745.	2.2	91
87	Exposing the third chromosome of <i>Burkholderia cepacia</i> complex strains as a virulence plasmid. Molecular Microbiology, 2012, 83, 362-378.	2.5	90
88	Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS. Microbiology (United Kingdom), 2004, 150, 843-851.	1.8	89
89	Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiology Letters, 2006, 149, 77-83.	1.8	89
90	Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2228-2235.	1.7	87

#	Article	IF	CITATIONS
91	Antibiotics Stimulate Formation of Vesicles in <i>Staphylococcus aureus</i> in both Phage-Dependent and -Independent Fashions and via Different Routes. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	86
92	Identification of a Novel Virulence Factor in Burkholderia cenocepacia H111 Required for Efficient Slow Killing of Caenorhabditis elegans. Infection and Immunity, 2004, 72, 7220-7230.	2.2	84
93	Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors. Analytical and Bioanalytical Chemistry, 2007, 387, 455-467.	3.7	83
94	Proteome analysis of fungal and bacterial involvement in leaf litter decomposition. Proteomics, 2010, 10, 1819-1830.	2.2	83
95	Analysis of the quorum-sensing regulon of the opportunistic pathogenBurkholderia cepacia H111 by proteomics. Electrophoresis, 2003, 24, 740-750.	2.4	79
96	The unexpected discovery of a novel low-oxygen-activated locus for the anoxic persistence of <i>Burkholderia cenocepacia</i> . ISME Journal, 2013, 7, 1568-1581.	9.8	79
97	LasI/R and RhII/R Quorum Sensing in a Strain of <i>Pseudomonas aeruginosa</i> Beneficial to Plants. Applied and Environmental Microbiology, 2009, 75, 5131-5140.	3.1	77
98	Monitoring the conjugal transfer of plasmid RP4 in activated sludge and in situ identification of the transconjugants. FEMS Microbiology Letters, 1999, 174, 9-17.	1.8	74
99	Production ofN-acyl-L-homoserine lactones byP. aeruginosaisolates from chronic lung infections associated with cystic fibrosis. FEMS Microbiology Letters, 2000, 184, 273-278.	1.8	73
100	Quantitative detection of changes in the leafâ€mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (<i>Hordeum vulgare</i> L.) plants. Proteomics, 2009, 9, 2668-2677.	2.2	73
101	The AHL- and BDSF-Dependent Quorum Sensing Systems Control Specific and Overlapping Sets of Genes in Burkholderia cenocepacia H111. PLoS ONE, 2012, 7, e49966.	2.5	70
102	A Quorum-Quenching Approach To Investigate the Conservation of Quorum-Sensing-Regulated Functions within the Burkholderia cepacia Complex. Applied and Environmental Microbiology, 2006, 72, 1579-1587.	3.1	68
103	Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiology Letters, 2006, 148, 115-122.	1.8	68
104	Synergistic Contribution of the <i>Legionella pneumophila lqs</i> Genes to Pathogen-Host Interactions. Journal of Bacteriology, 2008, 190, 7532-7547.	2.2	66
105	Burkholderia Species Are Major Inhabitants of White Lupin Cluster Roots. Applied and Environmental Microbiology, 2011, 77, 7715-7720.	3.1	66
106	Intraclonal diversity of the <i>Pseudomonas aeruginosa</i> cystic fibrosis airway isolates TBCF10839 and TBCF121838: distinct signatures of transcriptome, proteome, metabolome, adherence and pathogenicity despite an almost identical genome sequence. Environmental Microbiology, 2013, 15, 191-210.	3.8	66
107	The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nature Communications, 2020, 11, 2851.	12.8	66
108	Virulence of Burkholderia cepacia complex strains in gp91phoxâ^'/â^' mice. Cellular Microbiology, 2007, 9. 2817-2825.	2.1	65

#	Article	IF	CITATIONS
109	Two quorum sensing systems control biofilm formation and virulence in members of the <i>Burkholderia cepacia </i> complex. Virulence, 2013, 4, 400-409.	4.4	65
110	Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans. Frontiers in Microbiology, 2014, 4, 421.	3.5	65
111	The genome analysis of <scp><i>C</i></scp> <i>andidatus</i> â€ <scp>B</scp> urkholderia crenata reveals that secondary metabolism may be a key function of the <scp><i>A</i></scp> <i>rdisia crenata</i> leaf nodule symbiosis. Environmental Microbiology, 2016, 18, 2507-2522.	3.8	64
112	N -Acyl- l -Homoserine Lactone-Mediated Regulation of the Lip Secretion System in Serratia liquefaciens MG1. Journal of Bacteriology, 2001, 183, 1805-1809.	2.2	63
113	Evidence of horizontal gene transfer between obligate leaf nodule symbionts. ISME Journal, 2016, 10, 2092-2105.	9.8	63
114	High Confidence Prediction of Essential Genes in Burkholderia Cenocepacia. PLoS ONE, 2012, 7, e40064.	2.5	60
115	The eroded genome of a <i>Psychotria</i> leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environmental Microbiology, 2012, 14, 2757-2769.	3.8	60
116	A Burkholderia cenocepacia Orphan LuxR Homolog Is Involved in Quorum-Sensing Regulation. Journal of Bacteriology, 2009, 191, 2447-2460.	2.2	58
117	First evidence of a membraneâ€bound, tyramine and βâ€phenylethylamine producing, tyrosine decarboxylase in <i>Enterococcus faecalis</i> : A twoâ€dimensional electrophoresis proteomic study. Proteomics, 2009, 9, 2695-2710.	2.2	57
118	Heterologous Expression, Biosynthetic Studies, and Ecological Function of the Selective Gqâ€Signaling Inhibitor FR900359. Angewandte Chemie - International Edition, 2018, 57, 836-840.	13.8	57
119	Interactions between bacteria and eukaryotes via small molecules. Current Opinion in Biotechnology, 2006, 17, 268-273.	6.6	56
120	Integrated wholeâ€genome screening for <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> virulence genes using multiple disease models reveals that pathogenicity is host specific. Environmental Microbiology, 2015, 17, 4379-4393.	3.8	56
121	Differential Modulation of <i>Burkholderia cenocepacia</i> Virulence and Energy Metabolism by the Quorum-Sensing Signal BDSF and Its Synthase. Journal of Bacteriology, 2009, 191, 7270-7278.	2.2	53
122	Identification of functions linking quorum sensing with biofilm formation in <i>Burkholderia cenocepacia</i> H111. MicrobiologyOpen, 2012, 1, 225-242.	3.0	53
123	Diverse pathogenicity ofBurkholderia cepaciacomplex strains in theCaenorhabditis eleganshost model. FEMS Microbiology Letters, 2005, 250, 97-104.	1.8	52
124	Communication systems in the genus <i>Burkholderia</i> : global regulators and targets for novel antipathogenic drugs. Future Microbiology, 2007, 2, 555-563.	2.0	52
125	Analysis ofN-acyl-L-homoserine lactones produced byBurkholderia cepacia with partial filling micellar electrokinetic chromatography– electrospray ionization-ion trap mass spectrometry. Electrophoresis, 2003, 24, 3067-3074.	2.4	50
126	Multiple roles of <i>Pseudomonas aeruginosa</i> TBCF10839 PilY1 in motility, transport and infection. Molecular Microbiology, 2009, 71, 730-747.	2.5	50

#	Article	IF	CITATIONS
127	Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Systematic and Applied Microbiology, 2005, 28, 87-114.	2.8	49
128	Competition Experiments for Legume Infection Identify Burkholderia phymatum as a Highly Competitive β-Rhizobium. Frontiers in Microbiology, 2017, 8, 1527.	3.5	48
129	The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter. Scientific Reports, 2016, 6, 18753.	3.3	47
130	Response of Burkholderia cenocepacia H111 to Micro-Oxia. PLoS ONE, 2013, 8, e72939.	2.5	46
131	A novel siderophoreâ€independent strategy of iron uptake in the genus <scp><i>B</i></scp> <i>urkholderia</i> . Molecular Microbiology, 2014, 91, 805-820.	2.5	46
132	Leaf nodule symbiosis: function and transmission of obligate bacterial endophytes. Current Opinion in Plant Biology, 2018, 44, 23-31.	7.1	46
133	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	1.8	46
134	Bacterial Adhesion on Soft Materials: Passive Physicochemical Interactions or Active Bacterial Mechanosensing?. Advanced Healthcare Materials, 2019, 8, e1801323.	7.6	45
135	Isolation and Total Synthesis of Kirkamide, an Aminocyclitol from an Obligate Leaf Nodule Symbiont. Angewandte Chemie - International Edition, 2015, 54, 7968-7970.	13.8	44
136	$\ddot{l}f$ ⁵⁴ -Dependent Response to Nitrogen Limitation and Virulence in Burkholderia cenocepacia Strain H111. Applied and Environmental Microbiology, 2015, 81, 4077-4089.	3.1	44
137	Effects of bacterial N-acyl homoserine lactones on human Jurkat T lymphocytes-OdDHL induces apoptosis via the mitochondrial pathway. International Journal of Medical Microbiology, 2009, 299, 509-519.	3.6	43
138	The Burkholderia cenocepacia LysR-Type Transcriptional Regulator ShvR Influences Expression of Quorum-Sensing, Protease, Type II Secretion, and afc Genes. Journal of Bacteriology, 2011, 193, 163-176.	2.2	43
139	A Marine Mesorhizobium sp. Produces Structurally Novel Long-Chain N -Acyl- l -Homoserine Lactones. Applied and Environmental Microbiology, 2007, 73, 3587-3594.	3.1	42
140	Draft genome and description of Orrella dioscoreae gen. nov. sp. nov., a new species of Alcaligenaceae isolated from leaf acumens of Dioscorea sansibarensis. Systematic and Applied Microbiology, 2017, 40, 11-21.	2.8	42
141	The divergent promoters mediating transcription of the par locus of plasmid RP4 are subject to autoregulation. Molecular Microbiology, 1992, 6, 1969-1979.	2.5	41
142	Computer-Aided Design of Agents That Inhibit the cep Quorum-Sensing System of Burkholderia cenocepacia. Antimicrobial Agents and Chemotherapy, 2006, 50, 318-323.	3.2	41
143	Identification of Burkholderia cenocepacia Strain H111 Virulence Factors Using Nonmammalian Infection Hosts. Infection and Immunity, 2013, 81, 143-153.	2.2	40
144	Genome Sequence of Burkholderia cenocepacia H111, a Cystic Fibrosis Airway Isolate. Genome Announcements, 2014, 2, .	0.8	39

#	Article	IF	CITATIONS
145	Molecular characterization of the α-glucosidase activity in Enterobacter sakazakii reveals the presence of a putative gene cluster for palatinose metabolism. Systematic and Applied Microbiology, 2006, 29, 609-625.	2.8	37
146	Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Physical Biology, 2012, 9, 026007.	1.8	36
147	Burkholderia cenocepacia utilizes a type VI secretion system for bacterial competition. MicrobiologyOpen, 2019, 8, e774.	3.0	36
148	The Compound 2-Hexyl, 5-Propyl Resorcinol Has a Key Role in Biofilm Formation by the Biocontrol Rhizobacterium Pseudomonas chlororaphis PCL1606. Frontiers in Microbiology, 2019, 10, 396.	3.5	35
149	High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111. Microbiology (United Kingdom), 2017, 163, 754-764.	1.8	34
150	Physiological responses of Pseudomonas putida KT2442 to phosphate starvation. Microbiology (United Kingdom), 1996, 142, 155-163.	1.8	33
151	Identification and Characterization of a GDSL Esterase Gene Located Proximal to the swr Quorum-Sensing System of Serratia liquefaciens MG1. Applied and Environmental Microbiology, 2003, 69, 3901-3910.	3.1	33
152	The Third Replicon of Members of the Burkholderia cepacia Complex, Plasmid pC3, Plays a Role in Stress Tolerance. Applied and Environmental Microbiology, 2014, 80, 1340-1348.	3.1	33
153	Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant and Soil, 2011, 347, 125-136.	3.7	32
154	An Integrated Systems Approach Unveils New Aspects of Microoxia-Mediated Regulation in Bradyrhizobium diazoefficiens. Frontiers in Microbiology, 2019, 10, 924.	3.5	31
155	The structural role of bacterial eDNA in the formation of biofilm streamers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113723119.	7.1	30
156	The Burkholderia cepacia bceA gene encodes a protein with phosphomannose isomerase and GDP-d-mannose pyrophosphorylase activities. Biochemical and Biophysical Research Communications, 2007, 353, 200-206.	2.1	27
157	Different protein expression profiles in cheese and clinical isolates of <i>Enterococcus faecalis</i> revealed by proteomic analysis. Proteomics, 2012, 12, 431-447.	2.2	27
158	Proteomics Analysis of <i>Psychotria</i> Leaf Nodule Symbiosis: Improved Genome Annotation and Metabolic Predictions. Molecular Plant-Microbe Interactions, 2013, 26, 1325-1333.	2.6	27
159	Mutations in Two Paraburkholderia phymatum Type VI Secretion Systems Cause Reduced Fitness in Interbacterial Competition. Frontiers in Microbiology, 2017, 8, 2473.	3.5	27
160	Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl-like polysaccharide. Npj Biofilms and Microbiomes, 2020, 6, 37.	6.4	27
161	Regulation of <i>BurkholderiaÂcenocepacia</i> biofilm formation by RpoN and the câ€diâ€ <scp>GMP</scp> effector BerB. MicrobiologyOpen, 2017, 6, e00480.	3.0	26
162	Burkholderia cenocepacia J2315 acyl carrier protein: A potential target for antimicrobials' development?. Microbial Pathogenesis, 2008, 45, 331-336.	2.9	25

#	Article	IF	CITATIONS
163	A gelâ€free quantitative proteomics approach to investigate temperature adaptation of the foodâ€borne pathogen <i>Cronobacter turicensis</i> 3032. Proteomics, 2010, 10, 3248-3261.	2.2	24
164	The Essential Genome of Burkholderia cenocepacia H111. Journal of Bacteriology, 2017, 199, .	2.2	24
165	A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions. Journal of Nanobiotechnology, 2020, 18, 166.	9.1	24
166	16S rRNA geneâ€based phylogenetic microarray for simultaneous identification of members of the genus <i>Burkholderia</i> . Environmental Microbiology, 2009, 11, 779-800.	3.8	22
167	Bioinspired, releasable quorum sensing modulators. Chemical Communications, 2013, 49, 155-157.	4.1	22
168	Detection of bioluminescence from individual bacterial cells: a comparison of two different low-light imaging systems. , 1997, 12, 7-13.		21
169	Detection of N -(3-Oxohexanoyl)- l -Homoserine Lactone in Mice Infected with Yersinia enterocolitica Serotype O8. Infection and Immunity, 2003, 71, 6624-6626.	2.2	21
170	Detection of quorum-sensing-related molecules in Vibrio scophthalmi. BMC Microbiology, 2008, 8, 138.	3.3	21
171	Mining quorum sensing regulated proteins – Role of bacterial cellâ€ŧoâ€ɛell communication in global gene regulation as assessed by proteomics. Proteomics, 2011, 11, 3070-3085.	2.2	21
172	Key Players and Individualists of Cyclic-di-GMP Signaling in Burkholderia cenocepacia. Frontiers in Microbiology, 2018, 9, 3286.	3.5	21
173	Serratia liquefaciensswarm cells exhibit enhanced resistance to predation byTetrahymenasp FEMS Microbiology Letters, 1998, 164, 69-75.	1.8	20
174	Multicellularity in Bacteria: From Division of Labor to Biofilm Formation. Advances in Marine Genomics, 2015, , 79-95.	1.2	20
175	NtrC-dependent control of exopolysaccharide synthesis and motility in Burkholderia cenocepacia H111. PLoS ONE, 2017, 12, e0180362.	2.5	20
176	A proteomics approach to study synergistic and antagonistic interactions of the fungal–bacterial consortium <i>Fusarium oxysporum</i> wildâ€ŧype MSA 35. Proteomics, 2010, 10, 3292-3320.	2.2	17
177	The genetic basis of cadmium resistance of <i><scp>B</scp>urkholderia cenocepacia</i> . Environmental Microbiology Reports, 2012, 4, 562-568.	2.4	17
178	Evidence for the widespread production of DSF family signal molecules by members of the genus <i>Burkholderia</i> by the aid of novel biosensors. Environmental Microbiology Reports, 2016, 8, 38-44.	2.4	17
179	The role of siderophores in metal homeostasis of members of the genus <i>Burkholderia</i> . Environmental Microbiology Reports, 2016, 8, 103-109.	2.4	17
180	Genetic architecture constrains exploitation of siderophore cooperation in the bacterium <i>Burkholderia cenocepacia</i> . Evolution Letters, 2019, 3, 610-622.	3.3	17

#	Article	IF	CITATIONS
181	PhyloDetect: a likelihood-based strategy for detecting microorganisms with diagnostic microarrays. Bioinformatics, 2008, 24, i83-i89.	4.1	16
182	Construction of Self-Transmissible Green Fluorescent Protein-Based Biosensor Plasmids and Their Use for Identification of <i>N</i> -Acyl Homoserine-Producing Bacteria in Lake Sediments. Applied and Environmental Microbiology, 2010, 76, 6119-6127.	3.1	16
183	Assessment of flhDC mRNA Levels inSerratia liquefaciens Swarm Cells. Journal of Bacteriology, 2000, 182, 2680-2686.	2.2	15
184	Proteomic profiling of <i>Cronobacter turicensis</i> 3032, a foodâ€borne opportunistic pathogen. Proteomics, 2009, 9, 3564-3579.	2.2	15
185	Paraoxonase 2 Acts as a Quorum Sensing–Quenching Factor in Human Keratinocytes. Journal of Investigative Dermatology, 2012, 132, 2296-2299.	0.7	15
186	Role of Burkholderia cenocepacia afcE and afcF genes in determining lipid-metabolism-associated phenotypes. Microbiology (United Kingdom), 2013, 159, 603-614.	1.8	15
187	Proteome analysis of intraclonal diversity of twoPseudomonas aeruginosa TB clone isolates. Proteomics, 2004, 4, 1241-1246.	2.2	14
188	Deciphering the Enigmatic Function of Pseudomonas Metallothioneins. Frontiers in Microbiology, 2020, 11, 1709.	3.5	14
189	Biosynthesis and Structure–Activity Relationship Investigations of the Diazeniumdiolate Antifungal Agent Fragin. ChemBioChem, 2020, 21, 1587-1592.	2.6	14
190	Functional Silverâ€Siliconeâ€Nanofilamentâ€Composite Material for Water Disinfection. Small, 2017, 13, 1601072.	10.0	13
191	The afc antifungal activity cluster, which is under tight regulatory control of ShvR, is essential for transition from intracellular persistence of Burkholderia cenocepacia to acute pro-inflammatory infection. PLoS Pathogens, 2018, 14, e1007473.	4.7	13
192	Synthesis and Biological Evaluation of the Novel Growth Inhibitor Streptol Glucoside, Isolated from an Obligate Plant Symbiont. Chemistry - A European Journal, 2019, 25, 1722-1726.	3.3	13
193	The Exopolysaccharide Cepacian Plays a Role in the Establishment of the Paraburkholderia phymatum – Phaseolus vulgaris Symbiosis. Frontiers in Microbiology, 2020, 11, 1600.	3.5	13
194	DNA Methylation Epigenetically Regulates Gene Expression in Burkholderia cenocepacia and Controls Biofilm Formation, Cell Aggregation, and Motility. MSphere, 2020, 5, .	2.9	13
195	Inactivation of gltB Abolishes Expression of the Assimilatory Nitrate Reductase Gene (nasB) in Pseudomonas putida KT2442. Journal of Bacteriology, 2000, 182, 3368-3376.	2.2	12
196	The Burkholderia cenocepacia K56-2 pleiotropic regulator Pbr, is required for stress resistance and virulence. Microbial Pathogenesis, 2010, 48, 168-177.	2.9	12
197	Copper resistance genes of <scp><i>Burkholderia cenocepacia</i></scp> H111 identified by transposon sequencing. Environmental Microbiology Reports, 2020, 12, 241-249.	2.4	12
198	Isolation and Total Synthesis of Kirkamide, an Aminocyclitol from an Obligate Leaf Nodule Symbiont. Angewandte Chemie, 2015, 127, 8079-8081.	2.0	10

#	Article	IF	CITATIONS
199	Mapping of the Denitrification Pathway in Burkholderia thailandensis by Genome-Wide Mutant Profiling. Journal of Bacteriology, 2020, 202, .	2.2	10
200	Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. Frontiers in Plant Science, 2021, 12, 699590.	3.6	10
201	The IclR-Family Regulator BapR Controls Biofilm Formation in B. cenocepacia H111. PLoS ONE, 2014, 9, e92920.	2.5	10
202	Use of Synthetic Hybrid Strains To Determine the Role of Replicon 3 in Virulence of the Burkholderia cepacia Complex. Applied and Environmental Microbiology, 2017, 83, .	3.1	9
203	Draft Genome Sequence of Cronobacter sakazakii GP1999, Sequence Type 145, an Epiphytic Isolate Obtained from the Tomato's Rhizoplane/Rhizosphere Continuum. Genome Announcements, 2017, 5, .	0.8	9
204	Role of extracellular matrix components in the formation of biofilms and their contribution to the biocontrol activity of <i>Pseudomonas chlororaphis</i> <scp>PCL1606</scp> . Environmental Microbiology, 2021, 23, 2086-2101.	3.8	9
205	Identification of Genes Required for Resistance to Peptidomimetic Antibiotics by Transposon Sequencing. Frontiers in Microbiology, 2020, 11, 1681.	3.5	8
206	Mitigation of <i>Pseudomonas syringae</i> virulence by signal inactivation. Science Advances, 2021, 7, eabg2293.	10.3	8
207	Bioinspired Surfaces Against Bacterial Infections. Chimia, 2013, 67, 275-278.	0.6	7
208	NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target. MBio, 2021, 12, .	4.1	7
209	Fluorescent Labeling Agents for Quorum‣ensing Receptors (FLAQS) in Live Cells. Chemistry - A European Journal, 2013, 19, 9766-9770.	3.3	6
210	Identification and characterization of ϕH111-1. Bacteriophage, 2013, 3, e26649.	1.9	5
211	Heterologe Expression, Biosynthese und ökologische Funktion des selektiven Gq‣ignaltransduktionsinhibitors FR900359. Angewandte Chemie, 2018, 130, 844-849.	2.0	5
212	Bacterial surface properties influence the activity of the TAT-RasGAP317-326 antimicrobial peptide. IScience, 2021, 24, 102923.	4.1	5
213	Microbial Biofilms and Quorum Sensing. , 2015, , 45-52.		4
214	Detection of cytosine methylation in Burkholderia cenocepacia by single-molecule real-time sequencing and whole-genome bisulfite sequencing. Microbiology (United Kingdom), 2021, 167, .	1.8	4
215	Investigation of Burkholderia cepacia Complex Methylomes via Single-Molecule, Real-Time Sequencing and Mutant Analysis. Journal of Bacteriology, 2021, 203, e0068320.	2.2	4

Functions of MVs in Inter-Bacterial Communication. , 2020, , 101-117.

#	Article	IF	CITATIONS
217	Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiology Letters, 1997, 148, 115-122.	1.8	4
218	Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiology Letters, 1997, 149, 77-83.	1.8	4
219	Leaf nodule endosymbiotic Burkholderia confer targeted allelopathy to their Psychotria hosts. Scientific Reports, 2021, 11, 22465.	3.3	4
220	The role of peptidoglycan hydrolases in the formation and toxicity of <i>Pseudomonas aeruginosa</i> membrane vesicles. MicroLife, 2022, 3, .	2.1	4
221	Paraburkholderia phymatum STM815 σ54 Controls Utilization of Dicarboxylates, Motility, and T6SS-b Expression. Nitrogen, 2020, 1, 81-98.	1.3	3
222	Metabolomics and Dual RNA-Sequencing on Root Nodules Revealed New Cellular Functions Controlled by Paraburkholderia phymatum NifA. Metabolites, 2021, 11, 455.	2.9	3
223	From a Local Dialect to a Common Language. Chemistry and Biology, 2006, 13, 803-804.	6.0	2
224	Identification of AHL- and BDSF-Controlled Proteins in Burkholderia cenocepacia by Proteomics. Methods in Molecular Biology, 2018, 1673, 193-202.	0.9	2
225	Understanding plant–microorganism interactions to envision a future of sustainable agriculture. Environmental Microbiology, 2021, 23, 1809-1811.	3.8	2
226	Identification of genes required for gold and silver tolerance in Burkholderia cenocepacia   H111 by transposon sequencing. Environmental Microbiology, 2021, , .	3.8	2
227	Use of bioluminescence for monitoring the viability of individual Pseudomonas putida KT2442 cells. FEMS Microbiology Letters, 1997, 149, 133-140.	1.8	2
228	Serratia liquefaciens swarm cells exhibit enhanced resistance to predation by Tetrahymena sp FEMS Microbiology Letters, 1998, 164, 69-75.	1.8	1
229	Identification of Key Factors for Anoxic Survival of B. cenocepacia H111. International Journal of Molecular Sciences, 2022, 23, 4560.	4.1	1
230	In Situ Monitoring of Bacterial Presence and Activity. , 0, , 49-58.		0