Felicity Burt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5859872/publications.pdf

Version: 2024-02-01

92 papers 5,087 citations

34 h-index 91884 69 g-index

96 all docs 96 docs citations

96 times ranked 5813 citing authors

#	Article	IF	CITATIONS
1	Chikungunya: a re-emerging virus. Lancet, The, 2012, 379, 662-671.	13.7	506
2	Experimental Inoculation of Plants and Animals with Ebola Virus. Emerging Infectious Diseases, 1996, 2, 321-325.	4.3	326
3	Clinical Virology of Ebola Hemorrhagic Fever (EHF): Virus, Virus Antigen, and IgG and IgM Antibody Findings among EHF Patients in Kikwit, Democratic Republic of the Congo, 1995. Journal of Infectious Diseases, 1999, 179, S177-S187.	4.0	314
4	Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infectious Diseases, The, 2017, 17, e107-e117.	9.1	302
5	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
6	Studies of Reservoir Hosts for Marburg Virus. Emerging Infectious Diseases, 2007, 13, 1847-1851.	4.3	232
7	Marburg Hemorrhagic Fever Associated with Multiple Genetic Lineages of Virus. New England Journal of Medicine, 2006, 355, 909-919.	27.0	221
8	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
9	Comorbidities in SARS-CoV-2 Patients: a Systematic Review and Meta-Analysis. MBio, 2021, 12, .	4.1	184
10	The 2000 epidemic of Rift Valley fever in Saudi Arabia: mosquito vector studies. Medical and Veterinary Entomology, 2002, 16, 245-252.	1.5	177
11	Molecular Evolution of Viruses of the Family Filoviridae Based on 97 Whole-Genome Sequences. Journal of Virology, 2013, 87, 2608-2616.	3.4	138
12	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
13	lgG-sandwich and lgM-capture enzyme-linked immunosorbent assay for the detection of antibody to Rift Valley fever virus in domestic ruminants. Journal of Virological Methods, 2003, 113, 103-112.	2.1	109
14	Phylogenetic Relationships of Southern African West Nile Virus Isolates. Emerging Infectious Diseases, 2002, 8, 820-826.	4.3	109
15	The use of a reverse transcription–polymerase chain reaction for the detection of viral nucleic acid in the diagnosis of Crimean–Congo haemorrhagic fever. Journal of Virological Methods, 1998, 70, 129-137.	2.1	104
16	Validation of IgG-sandwich and IgM-capture ELISA for the detection of antibody to Rift Valley fever virus in humans. Journal of Virological Methods, 2005, 124, 173-181.	2.1	99
17	Serodiagnosis of Crimean-Congo haemorrhagic fever. Epidemiology and Infection, 1994, 113, 551-562.	2.1	80
18	Investigation of tick-borne viruses as pathogens of humans in South Africa and evidence of Dugbe virus infection in a patient with prolonged thrombocytopenia. Epidemiology and Infection, 1996, 116, 353-361.	2.1	78

#	Article	IF	CITATIONS
19	Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology, 2005, 342, 119-140.	2.4	76
20	Experimental infection of ostriches with Crimean–Congo haemorrhagic fever virus. Epidemiology and Infection, 1998, 121, 427-432.	2.1	69
21	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
22	First Documentation of Human Crimean-Congo Hemorrhagic Fever, Kenya. Emerging Infectious Diseases, 2002, 8, 1005-1006.	4.3	60
23	Molecular epidemiology of African and Asian Crimean-Congo haemorrhagic fever isolates. Epidemiology and Infection, 2005, 133, 659-666.	2.1	60
24	The Use of a Mobile Laboratory Unit in Support of Patient Management and Epidemiological Surveillance during the 2005 Marburg Outbreak in Angola. PLoS Neglected Tropical Diseases, 2011, 5, e1183.	3.0	56
25	ICTV Virus Taxonomy Profile: Nairoviridae. Journal of General Virology, 2020, 101, 798-799.	2.9	56
26	Enzyme-linked immunosorbent assays for the detection of antibody to Crimean-Congo haemorrhagic fever virus in the sera of livestock and wild vertebrates. Epidemiology and Infection, 1993, 111, 547-558.	2.1	55
27	An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus. Epidemiology and Infection, 2009, 137, 1309-1318.	2.1	46
28	Genetic relationship in southern African Crimean-Congo haemorrhagic fever virus isolates: evidence for occurrence of reassortment. Epidemiology and Infection, 2009, 137, 1302-1308.	2.1	45
29	Crimean–Congo Hemorrhagic Fever Virus: Advances in Vaccine Development. BioResearch Open Access, 2020, 9, 137-150.	2.6	44
30	Yellow Fever Outbreak, Southern Sudan, 2003. Emerging Infectious Diseases, 2004, 10, 1668-1670.	4.3	41
31	Chikungunya virus and arthritic disease. Lancet Infectious Diseases, The, 2014, 14, 789-790.	9.1	41
32	Biosafety standards for working with Crimean-Congo hemorrhagic fever virus. Journal of General Virology, 2016, 97, 2799-2808.	2.9	39
33	Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. Lancet Infectious Diseases, The, 2021, 21, e123-e133.	9.1	38
34	Yellow Fever Outbreak, Imatong, Southern Sudan. Emerging Infectious Diseases, 2004, 10, 1064-1068.	4.3	37
35	Bacterial expression of Crimean-Congo hemorrhagic fever virus nucleoprotein and its evaluation as a diagnostic reagent in an indirect ELISA. Journal of Virological Methods, 2012, 179, 70-76.	2.1	34
36	Global Genomic Diversity of Human Papillomavirus 6 Based on 724 Isolates and 190 Complete Genome Sequences. Journal of Virology, 2014, 88, 7307-7316.	3.4	33

#	Article	IF	Citations
37	Long-lived CD8+ T cell responses following Crimean-Congo haemorrhagic fever virus infection. PLoS Neglected Tropical Diseases, 2017, 11, e0006149.	3.0	33
38	Serologic Survey among Hospital and Health Center Workers during the Ebola Hemorrhagic Fever Outbreak in Kikwit, Democratic Republic of the Congo, 1995. Journal of Infectious Diseases, 1999, 179, S98-S101.	4.0	32
39	Next-generation sequencing of southern African Crimean-Congo haemorrhagic fever virus isolates reveals a high frequency of M segment reassortment. Epidemiology and Infection, 2014, 142, 1952-1962.	2.1	27
40	HPV types causing juvenile recurrent laryngeal papillomatosis in South Africa. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 255-259.	1.0	26
41	Risk factors associated with exposure to Crimean-Congo haemorrhagic fever virus in animal workers and cattle, and molecular detection in ticks, South Africa. PLoS Neglected Tropical Diseases, 2021, 15, e0009384.	3.0	26
42	Rift Valley Fever Virus Exposure amongst Farmers, Farm Workers, and Veterinary Professionals in Central South Africa. Viruses, 2019, 11, 140.	3.3	25
43	Epitope-mapping of the glycoprotein from Crimean-Congo hemorrhagic fever virus using a microarray approach. PLoS Neglected Tropical Diseases, 2018, 12, e0006598.	3.0	22
44	Encephalomyocarditis virus mortality in semi-wild bonobos (Pan panicus). Journal of Medical Primatology, 2011, 40, 157-163.	0.6	21
45	ACE2 and TMPRSS2 variation in savanna monkeys (Chlorocebus spp.): Potential risk for zoonotic/anthroponotic transmission of SARS-CoV-2 and a potential model for functional studies. PLoS ONE, 2020, 15, e0235106.	2.5	21
46	A Simple-Probe \hat{A}^{\otimes} real-time PCR assay for genotyping reassorted and non-reassorted isolates of Crimean-Congo hemorrhagic fever virus in southern Africa. Journal of Virological Methods, 2010, 169, 34-38.	2.1	20
47	Global Genomic Diversity of Human Papillomavirus 11 Based on 433 Isolates and 78 Complete Genome Sequences. Journal of Virology, 2016, 90, 5503-5513.	3.4	20
48	Cytokine Induction after Laboratory-Acquired West Nile Virus Infection. New England Journal of Medicine, 2009, 360, 1260-1262.	27.0	19
49	Human papillomavirus in head and neck squamous cell carcinomas in a South African cohort. Papillomavirus Research (Amsterdam, Netherlands), 2018, 6, 58-62.	4.5	18
50	A systematic review and meta-analysis of the sensitivity of antibody tests for the laboratory confirmation of COVID-19. Future Virology, 2022, 17, 119-139.	1.8	18
51	Novel HPV-6 variants of human papillomavirus causing recurrent respiratory papillomatosis in southern Africa. Epidemiology and Infection, 2012, 140, 1095-1101.	2.1	16
52	Human defined antigenic region on the nucleoprotein of Crimean-Congo hemorrhagic fever virus identified using truncated proteins and a bioinformatics approach. Journal of Virological Methods, 2013, 193, 706-712.	2.1	16
53	Plant-produced Crimean-Congo haemorrhagic fever virus nucleoprotein for use in indirect ELISA. Journal of Virological Methods, 2016, 236, 170-177.	2.1	15
54	Seroepidemiologic Survey of Crimean-Congo Hemorrhagic Fever Virus in Selected Risk Groups, South Africa. Emerging Infectious Diseases, 2018, 24, 1360-1363.	4.3	15

#	Article	IF	Citations
55	Human papillomavirus DNA in head and neck squamous cell carcinomas in the Free State, South Africa. Journal of Medical Virology, 2020, 92, 227-233.	5.0	15
56	Use of Envelope Domain III Protein for Detection and Differentiation of Flaviviruses in the Free State Province, South Africa. Vector-Borne and Zoonotic Diseases, 2014, 14, 261-271.	1.5	14
57	Laboratory diagnosis of Crimean–Congo hemorrhagic fever virus infections. Future Virology, 2011, 6, 831-841.	1.8	13
58	Arboviruses in southern Africa: are we missing something?. Future Virology, 2014, 9, 993-1008.	1.8	12
59	Basic insights into Zika virus infection of neuroglial and brain endothelial cells. Journal of General Virology, 2020, 101, 622-634.	2.9	12
60	Detection of IgG antibody against Crimean-Congo haemorrhagic fever virus using ELISA with recombinant nucleoprotein antigens from genetically diverse strains. Epidemiology and Infection, 2014, 142, 2147-2154.	2.1	11
61	Crimean-Congo Hemorrhagic Fever. , 0, , 164-175.		11
62	History and classification of Aigai virus (formerly Crimean–Congo haemorrhagic fever virus genotype) Tj ETQo	0 0.0 rgB1ر 2.9	Γ/Overlock 10
63	HPV associated with recurrent respiratory papillomatosis. Future Virology, 2013, 8, 477-492.	1.8	9
64	FRET-based detection and genotyping of HPV-6 and HPV-11 causing recurrent respiratory papillomatosis. Journal of Virological Methods, 2013, 189, 271-276.	2.1	8
65	Identification of human linear B-cell epitope sites on the envelope glycoproteins of Crimean-Congo haemorrhagic fever virus. Epidemiology and Infection, 2015, 143, 1451-1456.	2.1	8
66	Determination of the complete genome and functional analysis of HPV6 isolate VBD19/10 from a patient with aggressive recurrent respiratory papillomatosis. Epidemiology and Infection, 2016, 144, 2128-2135.	2.1	8
67	Comparative analysis of the L, M, and S RNA segments of Crimean-Congo haemorrhagic fever virus isolates from southern Africa. Journal of Medical Virology, 2015, 87, 717-724.	5.0	7
68	Evaluation of in vitro refolding vs cold shock expression: Production of a low yielding single chain variable fragment. Protein Expression and Purification, 2018, 151, 62-71.	1.3	7
69	Use of a molecular epidemiological database to track human rabies case histories in South Africa. Epidemiology and Infection, 2008, 136, 1270-1276.	2.1	6
70	Immunogenicity of a DNA-Based Sindbis Replicon Expressing Crimean–Congo Hemorrhagic Fever Virus Nucleoprotein. Vaccines, 2021, 9, 1491.	4.4	6
71	Mammarenaviruses of Rodents, South Africa and Zimbabwe. Emerging Infectious Diseases, 2021, 27, 3092-3102.	4.3	5
72	Factors affecting the use of biosecurity measures for the protection of ruminant livestock and farm workers against infectious diseases in central South Africa. Transboundary and Emerging Diseases, 2022, 69, .	3.0	5

#	Article	IF	CITATIONS
73	Third Tofo Advanced Study Week on Emerging and Re-emerging Viruses, 2018. Antiviral Research, 2019, 162, 142-150.	4.1	3
74	Crimean-Congo Haemorrhagic Fever Virus, an Emerging and Re-Emerging Pathogen., 2015,, 977-996.		2
75	Complete genome sequence of a HPV31 isolate from laryngeal squamous cell carcinoma and biological consequences for p97 promoter activity. PLoS ONE, 2021, 16, e0252524.	2.5	2
76	Preparation of antigenically active recombinant yellow fever viral envelope domain III protein. International Journal of Infectious Diseases, 2010, 14, e47.	3.3	1
77	Development of immunoassays for detection of flaviviruses in the Free State Province, South Africa. International Journal of Infectious Diseases, 2014, 21, 456.	3.3	1
78	Identification of antigen-specific serological cross-reactivity among survivors of Crimean Congo haemorrhagic fever. International Journal of Infectious Diseases, 2014, 21, 225.	3.3	1
79	Next generation sequencing of southern African Crimean-Congo haemorrhagic fever virus isolates. International Journal of Infectious Diseases, 2014, 21, 328.	3.3	1
80	Persistence of Crimean-Congo Hemorrhagic Fever Virus RNA. Emerging Infectious Diseases, 2020, 26, 385-387.	4.3	1
81	Crimean-Congo Hemorrhagic Fever Virus and Nairoviruses of Medical Importance (Nairoviridae). , 2021, , 208-217.		1
82	Rapid reverse transcriptase recombinase polymerase amplification assay for flaviviruses using non-infectious in vitro transcribed RNA as positive controls. Journal of Virological Methods, 2022, 299, 114351.	2.1	1
83	Perspective Technologies of Vaccination: Do We Still Need Old Vaccines?. Vaccines, 2022, 10, 891.	4.4	1
84	Gene optimization for expression of Crimean-Congo haemorrhagic fever viral nucleoprotein. International Journal of Infectious Diseases, 2010, 14, e47.	3.3	0
85	Development of a recombinant antigen and multiplex PCR for differentiation of tick-borne and mosquito-borne flaviviruses. International Journal of Infectious Diseases, 2010, 14, e48.	3.3	0
86	A history of diagnostic virology. Lancet Infectious Diseases, The, 2014, 14, 107.	9.1	0
87	Identification of linear B-cell epitopes in the capsid, NS4a and domain III region in the E glycoprotein of yellow fever virus. International Journal of Infectious Diseases, 2014, 21, 326.	3.3	0
88	DNA-launched sindbis virus based replicon encoding the yellow fever virus ED-lll protein. International Journal of Infectious Diseases, 2014, 21, 431.	3.3	0
89	Characterization of the inhibition mechanism of a tissuefactor inhibiting single-chain variable fragment: a combined computational approach. Journal of Molecular Modeling, 2020, 26, 87.	1.8	0
90	A simple and rapid approach to prepare Sindbis and West Nile viral RNA controls for differentiation between positive samples and laboratory contamination. Journal of Virological Methods, 2020, 278, 113822.	2.1	0

#	Article	lF	CITATIONS
91	Whole-Genome Sequence and Comparative Analysis of Human Papillomavirus Type 18 Isolated from a Nasopharyngeal Carcinoma from South Africa. Microbiology Resource Announcements, 2021, 10, e0063021.	0.6	o
92	Bunyaviridae 0 699-731.		0