John Iwan Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5859612/publications.pdf Version: 2024-02-01

IOHN IWAN IONES

#	Article	IF	CITATIONS
1	High summer macrophyte cover increases abundance, growth, and feeding of juvenile Atlantic salmon. Ecological Applications, 2022, 32, e02492.	3.8	8
2	Separating natural from human enhanced methane emissions in headwater streams. Nature Communications, 2022, 13, .	12.8	6
3	Systematic variation in food web body-size structure linked to external subsidies. Biology Letters, 2021, 17, 20200798.	2.3	11
4	Seasonal feeding plasticity can facilitate coexistence of dominant omnivores in Neotropical streams. Reviews in Fish Biology and Fisheries, 2021, 31, 417-432.	4.9	13
5	Accumulation of trace metals in freshwater macroinvertebrates across metal contamination gradients. Environmental Pollution, 2021, 276, 116721.	7.5	7
6	Biodiversity assessment across a dynamic riverine system: A comparison of eDNA metabarcoding versus traditional fish surveying methods. Environmental DNA, 2021, 3, 1247-1266.	5.8	29
7	The structure and functionality of communities and food webs in streams along the epigean–hypogean continuum: unifying ecological stoichiometry and metabolic theory of ecology. Aquatic Sciences, 2021, 83, 1.	1.5	4
8	Above parr: Lowland river habitat characteristics associated with higher juvenile Atlantic salmon () Tj ETQq0 0 0	rgBT /Ovei 1.4	loçk 10 Tf 50
9	Key Questions for Next-Generation Biomonitoring. Frontiers in Environmental Science, 2020, 7, .	3.3	68
10	Faunal community change in the sediment impacted Bovington Stream and the River Frome (Dorset, UK) between 1998 and 2016. SN Applied Sciences, 2020, 2, 1.	2.9	0
11	Systematic Analysis of the Relative Abundance of Polymers Occurring as Microplastics in Freshwaters and Estuaries. International Journal of Environmental Research and Public Health, 2020, 17, 9304.	2.6	34
12	Two is better than one: combining gut content and stable isotope analyses to infer trophic interactions between native and invasive species. Hydrobiologia, 2019, 839, 25-35.	2.0	25
13	Physical and biological controls on fine sediment transport and storage in rivers. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1331.	6.5	49
14	Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Research, 2018, 138, 192-205.	11.3	275
15	The Impact of Metal-Rich Sediments Derived from Mining on Freshwater Stream Life. Reviews of Environmental Contamination and Toxicology, 2018, 248, 111-189.	1.3	2
16	Bending the rules: exploitation of allochthonous resources by a topâ€predator modifies sizeâ€abundance scaling in stream food webs. Ecology Letters, 2018, 21, 1771-1780.	6.4	30

17	The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Science of the Total Environment, 2018, 637-638, 1295-1310.	8.0	377
18	Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Science of the Total Environment, 2018, 645, 1598-1616.	8.0	87

2

JOHN IWAN JONES

#	Article	IF	CITATIONS
19	Diatoms as indicators of fine sediment stress. Ecohydrology, 2017, 10, e1832.	2.4	15
20	The effects of altered flow and bed sediment on macroinvertebrates in stream mesocosms. Marine and Freshwater Research, 2017, 68, 496.	1.3	8
21	Do agriâ€environment schemes result in improved water quality?. Journal of Applied Ecology, 2017, 54, 537-546.	4.0	38
22	A small number of anadromous females drive reproduction in a brown trout (<i>Salmo trutta</i>) population in an English chalk stream. Freshwater Biology, 2016, 61, 1075-1089.	2.4	22
23	Biological barriers to restoration: testing the biotic resistance hypothesis in an upland stream recovering from acidification. Hydrobiologia, 2016, 777, 161-170.	2.0	7
24	Development of a biotic index using stream macroinvertebrates to assess stress from deposited fine sediment. Freshwater Biology, 2015, 60, 2019-2036.	2.4	53
25	Regional-scale drivers of groundwater faunal distributions. Freshwater Science, 2015, 34, 316-328.	1.8	34
26	Consequences of inferring diet from feeding guilds when estimating and interpreting consumer–resource stoichiometry. Freshwater Biology, 2014, 59, 1497-1508.	2.4	16
27	Consumer–resource elemental imbalances in a nutrient-rich stream. Freshwater Science, 2012, 31, 408-422.	1.8	30
28	Seeing Double:. Advances in Ecological Research, 2011, 45, 67-133.	2.7	65
29	Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Global Change Biology, 2011, 17, 1225-1234.	9.5	68
30	Back to the future: using palaeolimnology to infer longâ€ŧerm changes in shallow lake food webs. Freshwater Biology, 2010, 55, 600-613.	2.4	60
31	Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshwater Biology, 2010, 55, 487-499.	2.4	102
32	Weedbeds and big bugs: the importance of scale in detecting the influence of nutrients and predation on macroinvertebrates in plantâ€dominated shallow lakes. Freshwater Biology, 2010, 55, 514-530.	2.4	18
33	Ecological monitoring and assessment of pollution in rivers. , 2010, , 126-146.		27
34	Individual-Based Food Webs. Advances in Ecological Research, 2010, , 211-266.	2.7	84
35	Warming alters the metabolic balance of ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2117-2126.	4.0	322
36	Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophicationâ€driven pathway from plants to plankton?. Freshwater Biology, 2010, 55, 500-513.	2.4	136

JOHN IWAN JONES

#	Article	IF	CITATIONS
37	The British river of the future: How climate change and human activity might affect two contrasting river ecosystems in England. Science of the Total Environment, 2009, 407, 4787-4798.	8.0	134
38	Review: Ecological networks – beyond food webs. Journal of Animal Ecology, 2009, 78, 253-269.	2.8	765
39	A comparison of the relative contributions of temporal and spatial variation in the density of drifting invertebrates in a Dorset (U.K.) chalk stream. Freshwater Biology, 2008, 53, 1513-1523.	2.4	15
40	Nutrient availability and the carnivorous habit in Utricularia vulgaris. Freshwater Biology, 2007, 52, 500-509.	2.4	26
41	TBT Causes Regime Shift in Shallow Lakes. Environmental Science & Technology, 2006, 40, 5269-5275.	10.0	69
42	How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment, 2006, 365, 66-83.	8.0	417
43	The metabolic cost of bicarbonate use in the submerged plant Elodea nuttallii. Aquatic Botany, 2005, 83, 71-81.	1.6	18
44	Interaction strengths in food webs: issues and opportunities. Journal of Animal Ecology, 2004, 73, 585-598.	2.8	557
45	Area, altitude and aquatic plant diversity. Ecography, 2003, 26, 411-420.	4.5	121
46	Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biology, 2003, 48, 1396-1407.	2.4	77
47	Mobility of stream invertebrates in relation to disturbance and refugia: a test of habitat templet theory. Journal of the North American Benthological Society, 2003, 22, 207-223.	3.1	72
48	DOES THE FISH–INVERTEBRATE–PERIPHYTON CASCADE PRECIPITATE PLANT LOSS IN SHALLOW LAKES?. Ecology, 2003, 84, 2155-2167.	3.2	236
49	The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. Journal of Ecology, 2002, 90, 12-24.	4.0	144
50	Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists?. Freshwater Biology, 2000, 43, 591-604.	2.4	76
51	The influence of periphyton on boundary layer conditions: a pH microelectrode investigation. Aquatic Botany, 2000, 67, 191-206.	1.6	60
52	Diurnal carbon restrictions on the photosynthesis of dense stands of Elodea nuttallii (Planch.) St. John. Hydrobiologia, 1996, 340, 11-16.	2.0	28
53	Diurnal carbon restrictions on the photosynthesis of dense stands of Elodea nuttallii (Planch.) St. John. , 1996, , 11-16.		4

54 Body size and trophic cascades in lakes. , 0, , 118-139.

4

#	Article	IF	CITATIONS
55	The hyporheic zone as an invertebrate refuge during a fine sediment disturbance event. Ecohydrology, 0, , .	2.4	1