
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5859099/publications.pdf Version: 2024-02-01

Δταρίι Ισμινίος ε

#	Article	IF	CITATIONS
1	Observation of Non-Uniform Twin Microstructures in Dy123 Superconductor for Magnetic Biaxial Alignment. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	4
2	Fabrication of Fe(Te,Se) films added with oxide or chalcogenide: Influence of added material on phase formation and superconducting properties. Journal of Applied Physics, 2022, 131, 103901.	2.5	1
3	Growth and photo-response of (110) oriented BaBiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub> films on SrTiO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msub><mml:mrow< td=""><td>1.8</td><td>1</td></mml:mrow<></mml:msub></mml:math </mml:math 	1.8	1
4	Increase in the infield critical current density of MgB ₂ thin films by high-temperature post-annealing. Applied Physics Express, 2021, 14, 025504.	2.4	5
5	Elucidating the origin of planar defects that enhance critical current density in CaKFe ₄ As ₄ single crystals. Superconductor Science and Technology, 2021, 34, 034003.	3.5	10
6	Sulfur-induced magnetism in FeSe1â^'xSx thin films on LaAlO3 revealed by muon spin rotation/relaxation. Physical Review B, 2021, 103, .	3.2	4
7	Effect of Surface Liquid Layer during Film Growth On Morphology of BaHfO ₃ in YBa ₂ Cu ₃ O <i> _y </i> Coated Conductors Fabricated by Pulsed Laser Deposition. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	3
8	Enhancement of <i>I_c </i> of BaHfO ₃ -Doped REBCO Thick Coated Conductor Using Vapor-Liquid-Solid Growth Technique. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.7	2
9	Ultra-Fine Nb ₃ Al Mono-Core Wires and Cables. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	9
10	Superconducting properties of commercial REBCO-coated conductors with artificial pinning centers. Superconductor Science and Technology, 2021, 34, 105005.	3.5	25
11	Self-organized formation of a-few-nanometer sized nanocolumns in chalcogenide-oxide nanocomposite film. Thin Solid Films, 2021, 733, 138802.	1.8	1
12	Critical Current Density and Vortex Dynamics in Pristine and Irradiated KCa2Fe4As4F2. Materials, 2021, 14, 5283.	2.9	2
13	Synthesis and Characterization of Al- and SnO2-Doped ZnO Thermoelectric Thin Films. Materials, 2021, 14, 6929.	2.9	6
14	Microstructure of coated conductors with La- or Nb-doped SrTiO3 conductive buffer. Journal of Physics: Conference Series, 2020, 1559, 012032.	0.4	0
15	Fabrication of YBa ₂ Cu ₃ O _y coated conductor by Vapor-Liquid-Solid growth technique using a Reel-to-Reel system. Journal of Physics: Conference Series, 2020, 1590, 012029.	0.4	1
16	Microstructure of YBa2Cu3Oy coated conductor using {100} ⟠001⟩ textured Cu tape with dual functions of metal substrate and electric stabilizing layer in order to develop low-cost high-TC superconducting wires. AIP Advances, 2020, 10, 095305.	1.3	0
17	Twofold role of columnar defects in iron based superconductors. Superconductor Science and Technology, 2020, 33, 094012.	3.5	15
18	Anisotropic physical properties and large critical current density in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">K<mml:msub><mml:mi>Ca</mml:mi><mml:mn>2</mml:mn></mml:msub><!--<br-->mathvariant="normal">F<mml:mn>2</mml:mn></mml:mi </mml:mrow> single crystal. Physical Review Materials, 2020, 4, .</mml:math 	mm km sub:	>≺nnoonl:mi>Fe

#	Article	IF	CITATIONS
19	Effects of Splayed Columnar Defects on Critical Current Density in CaKFe ₄ As ₄ . Journal of Physics: Conference Series, 2020, 1590, 012015.	0.4	1
20	Improvement of anisotropy of superconducting properties in Y-rich YBa ₂ Cu ₃ O _y film in magnetic fields. Journal of Physics: Conference Series, 2019, 1293, 012030.	0.4	0
21	Microstructure of Candidate Conductive Buffer and Superconducting Layers in a Coated Conductor Using {100} <001> Textured Cu Tape. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	1
22	Porosity-tuned thermal conductivity in thermoelectric Al-doped ZnO thin films grown by mist-chemical vapor deposition. Thin Solid Films, 2019, 685, 180-185.	1.8	38
23	In-Plane Anisotropy of Transport Property in BaTbO3-Doped SmBa2Cu3O y Films. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	1
24	High critical current density YBa2Cu3O7 coating on conductive Nb-doped SrTiO3 and Ni double-buffered {100}〈001〉 textured pure Cu tape for low-cost coated conductors without generation of any insulative oxides at interfaces. Applied Physics Express, 2019, 12, 023010.	2.4	3
25	Large and significantly anisotropic critical current density induced by planar defects in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">CaKFe<mml:mn>4</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">As<mml:mn>4</mml:mn></mml:mi </mml:msub></mml:mrow></mmi:math 	3.2	42
26	Single crystals. Physical Review 8, 2010, 99, Flux Pinning by Columnar Defects Along <i>a</i> -axis in <i>a</i> -axis Oriented YBCO Thin Films. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	5
27	Microstructure and Critical Current of Commercially Available Coated Conductors (Rare-Earth-Based) Tj ETQq1 1 C 327-334.	0.784314 r 0.4	rgBT /Overlo 0
28	Investigation of the longitudinal magnetic field effect in SmBa ₂ Cu ₃ O _{ <i>y</i>} films with various shaped artificial pinning centers. Superconductor Science and Technology, 2019, 32, 035004.	3.5	2
29	In-Field ⁢i>j⁢/i>⁢sub>c⁢/sub> Properties in the Longitudinal Magnetic Field of BaHfO ₃ -Doped-Multilayered SmBa ₂ Cu ₃ O <i>_y</i> Films on Metal Tapes for the Cable Application. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of	0.4	0
30	Flux Pinning Properties in Y ₂ BaCuO ₅ -Doped YBa ₂ Cu ₃ O <i>_y</i> Films Fabricated with Vapor-Liquid-Solid Growth Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2019, 83, 335-340.	0.4	2
31	Field-driven transition in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mr mathvariant="normal">K<mml:mi></mml:mi></mml:mr </mml:msub><mml:msub><mml:mi>Fe</mml:mi><mml: superconductor with splayed columnar defects. Physical Review B. 2018. 97</mml: </mml:msub></mml:mrow></mml:math 	rowy < mml :mit>2 <td>:mn>1mi:mn></td>	:mn>1mi:mn>
32	Improved Flux Pinning for High-Field Applications in BaHfO3-Doped SmBa2Cu3 Oy-Coated Conductors With High Density of Random Pinning Centers Induced by BaHfO 3 Nanorods. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-6.	1.7	4
33	Anisotropy of critical current densities in Ba _{lâ^<<i>x</i>} K <i> _x </i> Fe ₂ As ₂ and Ba(Fe _{lâ^<<i>x</i>} Co <i> _x) Tj ETQq1 1 0.7845 Series, 2018, 1054, 012020.</i>	314 rgBT / 0.4	Qverlock 10
34	Superconductivity at 38 K at an electrochemical interface between an ionic liquid and FeSe0.8Te0.2 on various substrates. Scientific Reports, 2018, 8, 14731.	3.3	27
35	Angular behavior of flux dynamics in YBCO films with crossed columnar defects around the <i>ab</i> -plane. Superconductor Science and Technology, 2018, 31, 125002.	3.5	8
36	High infield performance and critical temperatures in post-annealed MgB2 films. Applied Physics Express, 2018, 11, 093102.	2.4	6

#	ARTICLEITICLE scattering in 3 MeV proton irradiated <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
	xmins:mmi="http://www.w3.org/1998/iviath/iviathiviL"> <mmi:mrow><mmi:msub><mmi:mi mathvariant="normal">BaFe<mmi:mn< td=""><td></td><td></td></mmi:mn<></mmi:mi </mmi:msub></mmi:mrow>		
37			

#	Article	IF	CITATIONS
55	Fabrication and critical current density analysis of YBa2Cu3O7+(BaSnO3)′/YBa2Cu3O7+(BaSnO3)″ multilayer films. Superconductor Science and Technology, 2016, 29, 085002.	3.5	3
56	Origin of lattice compression of FeSe1-xTex thin films on CaF2 substrates. AIP Advances, 2016, 6, 095314.	1.3	12
57	Phase Formation of YbBa2Cu4O8Films in Metal–Organic Deposition Method. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	Ο
58	Investigation of the Longitudinal Magnetic Field Effect on Multilayered- Films Fabricated on Single-Crystal and Metal Substrates. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	2
59	Hall-plot of the phase diagram for Ba(Fe1â^'xCox)2As2. Scientific Reports, 2016, 6, 28390.	3.3	30
60	Hybrid artificial pinning centers of elongated-nanorods and segmented-nanorods in YBa ₂ Cu ₃ O ₇ films. Superconductor Science and Technology, 2016, 29, 105010.	3.5	14
61	Improvement in <i>J</i> c performance below liquid nitrogen temperature for SmBa2Cu3O <i>y</i> superconducting films with BaHfO3 nano-rods controlled by low-temperature growth. APL Materials, 2016, 4, .	5.1	44
62	Microstructures of YBa2Cu3Oy Layers Deposited on Conductive Layer-Buffered Metal Tapes. Physics Procedia, 2016, 81, 113-116.	1.2	1
63	Controlling the Critical Current Anisotropy of YBCO Superconducting Films by Incorporating Hybrid Artificial Pinning Centers. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	15
64	Effect of self-grown seed layer on thermoelectric properties of ZnO thin films. Thin Solid Films, 2016, 605, 289-294.	1.8	36
65	Clarification and mitigation of markedJcdecrease at low magnetic fields of BaHfO3-doped SmBaCuO3thin films deposited on seed layer. Japanese Journal of Applied Physics, 2016, 55, 073101.	1.5	24
66	Evidence for enhancement of vortex matching field above 5 T and oxygen-deficient annuli around barium-niobate nanorods. Journal of Applied Physics, 2015, 118, 133907.	2.5	4
67	Dependence of BaMO ₃ (M=Zr, Sn, Hf) Materials on Lattice Stress and <i>T</i> _c in BaMO ₃ -Doped SmBa ₂ Cu ₃ O <i>_y</i> Thin Films. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2015, 50, 224-231.	0.1	3
68	Influence of Fe Buffer Layer on Co-Doped BaFe2As2Superconducting Thin Films. Advances in Condensed Matter Physics, 2015, 2015, 1-8.	1.1	2
69	Tailoring the vortex pinning strength of YBCO thin films by systematic incorporation of hybrid artificial pinning centers. Superconductor Science and Technology, 2015, 28, 114004.	3.5	21
70	Vortex pinning at low temperature under high magnetic field in SmBa ₂ Cu ₃ O _{<i>y</i>/sub>superconducting films with high number density and small size of BaHfO₃nano-rods. Superconductor Science and Technology, 2015, 28, 114006.}	3.5	14
71	Superconducting Properties in SmBa ₂ Cu ₃ O _y Films With High Density of BaHfO ₃ Nanorods Fabricated With a Seed Layer. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	9
72	High pinning performance of YBa ₂ Cu ₃ O _{7â^'x} films added with Y ₂ O ₃ nanoparticulate defects. Superconductor Science and Technology, 2015, 28, 024002.	3.5	40

#	Article	IF	CITATIONS
73	Effect of BaHfO3introduction on the transport current at the grain boundaries in SmBa2Cu3Oyfilms. Applied Physics Express, 2015, 8, 033101.	2.4	15
74	Influence of substrate type on transport properties of superconducting FeSe _{0.5} Te _{0.5} thin films. Superconductor Science and Technology, 2015, 28, 065005.	3.5	23
75	Flux Pinning Properties of a SmBa2Cu3O y Film Including High Number Density of BaHfO3 Nano-rods on LaAlO3 Substrate. Journal of Superconductivity and Novel Magnetism, 2015, 28, 367-369.	1.8	4
76	Characteristics of high-performance BaHfO ₃ -doped SmBa ₂ Cu ₃ O _{<i>y</i>} superconducting films fabricated with a seed layer and low-temperature growth. Superconductor Science and Technology, 2015, 28, 065013.	3.5	30
77	Crossover from hole- to electron-dominant regions in iron-chalcogenide superconductors induced by Te/Se substitution. Japanese Journal of Applied Physics, 2015, 54, 043102.	1.5	5
78	Magnetic Field of BG-VG Transition Depending on the Nanorods Shape in <inline-formula> <tex-math notation="TeX">\$hbox{BaHfO}_{3}\$</tex-math </inline-formula> -Doped <inline-formula> <tex-math notation="TeX">\$hbox{SmBa}_{2}hbox{Cu}_{3}hbox{O}_{y}\$</tex-math </inline-formula> Films. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	5
79	Mechanism of crystal alignment of CaO-stabilized ZrO ₂ through a mismatched interface of {110} 〈001〉 textured iron tape. Japanese Journal of Applied Physics, 2015, 54, 080302.	1.5	1
80	Direct growth of superconducting NdFeAs(O,F) thin films by MBE. Physica C: Superconductivity and Its Applications, 2015, 518, 69-72.	1.2	11
81	Microstructures and Superconducting Properties of BHO-doped SmBa ₂ Cu ₃ O <i>_y</i> Thin Films Grown by Changing the Growth Temperature using the PLD-LTG Technique. TEION KOGAKU (Journal of Cryogenics and) Tj ETQq1 1 0.784314 rgB ⁻	r Polverloc	:k 10 Tf 50 4
82	Growth of a smooth CaF2layer on NdFeAsO thin film. Journal of Physics: Conference Series, 2014, 507, 012047.	0.4	3
83	Influence of strain and composition on Tc in FeSe1â^'xTex films. Journal of Applied Physics, 2014, 116, 213906.	2.5	11
84	BaMO ₃ (M=Zr, Hf, Sn) material dependence of <i>T_c</i> reduction in BaMO ₃ -doped SmBa ₂ Cu ₃ O _{<i>y</i>} , films. Journal of Physics: Conference Series, 2014, 507, 022043.	0.4	9
85	Induced lattice strain in epitaxial Fe-based superconducting films on CaF2 substrates: A comparative study of the microstructures of SmFeAs(O,F), Ba(Fe,Co)2As2, and FeTe0.5Se0.5. Applied Physics Letters, 2014, 104, .	3.3	22
86	Highly textured oxypnictide superconducting thin films on metal substrates. Applied Physics Letters, 2014, 105, .	3.3	25
87	Effects of selective lattice deformation on YbBa ₂ Cu ₄ O ₈ and YBa ₂ Cu ₃ O ₇ epitaxial films. Applied Physics Letters, 2014, 104, 102601.	3.3	5
88	Inversion of the upper critical field anisotropy in FeTeS films. Superconductor Science and Technology, 2014, 27, 044005.	3.5	10
89	Synthesis, characterization, Hall effect and THz conductivity of epitaxial thin films of Fe chalcogenide superconductors. Applied Surface Science, 2014, 312, 43-49.	6.1	22
90	The influence of the geometric characteristics of nanorods on the flux pinning in high-performance BaMO ₃ -doped SmBa ₂ Cu ₃ O _{<i>y</i>} films (M = Hf, Sn). Superconductor Science and Technology, 2014, 27, 065001.	3.5	57

#	Article	IF	CITATIONS
91	Thermoelectric Properties of Al-Doped ZnO Thin Films. Journal of Electronic Materials, 2014, 43, 2145-2150.	2.2	28
92	Flux pinning properties and microstructures of a SmBa2Cu3Oyfilm with high number density of BaHfO3nanorods deposited by using low-temperature growth technique. Japanese Journal of Applied Physics, 2014, 53, 090304.	1.5	24
93	Elastic strain evolution in nanocomposite structure of YBa ₂ Cu ₃ O ₇ +BaZrO ₃ superconducting films. Japanese Journal of Applied Physics, 2014, 53, 083101.	1.5	19
94	Enhanced thermoelectric performance of Al-doped ZnO thin films on amorphous substrate. Japanese Journal of Applied Physics, 2014, 53, 060306.	1.5	44
95	Improvement of critical current densities in SmBa2Cu3Oy, films with BaHfO3nano-rods using low temperature growth technique. Journal of Physics: Conference Series, 2014, 507, 022021.	0.4	4
96	Development of High-performance YBCO Tapes Containing Hybrid APCs. TEION KOGAKU (Journal of) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
97	Superconducting Properties and Microstructures of BaHfO3-doped SmBa2Cu3Oy Films Fabricated using a Low-temperature Growth Technique. TEION KOGAKU (Journal of Cryogenics and) Tj ETQq1 1 0.784314 rg	gB T}/D verlo	oc ⊵ 10 Tf 50
98	<i>></i> _c improvement by double artificial pinning centers of BaSnO ₃ nanorods and Y ₂ O ₃ nanoparticles in YBa ₂ Cu ₃ O ₇ coated conductors. Superconductor Science and Technology, 2013, 26, 075019.	3.5	79
99	Solid Phase Epitaxial Growth of Fe(Te, S) Thin Films and Their Superconducting Properties. IEEE Transactions on Applied Superconductivity, 2013, 23, 7500104-7500104.	1.7	4
100	Critical Current Properties in \$hbox{REBa}_{2} hbox{Cu}_{3}hbox{O}_{y}\$ Films With Nanorods Depending on Growth Conditions. IEEE Transactions on Applied Superconductivity, 2013, 23, 8000904-8000904.	1.7	9
101	Flux Pinning Properties at Low Temperatures in \$ hbox{BaHfO}_{3}\$ Doped \$hbox{SmBa}_{2}hbox{Cu}_{3} hbox{O}_{y}\$ Films. IEEE Transactions on Applied Superconductivity, 2013, 23, 8001104-8001104.	1.7	28

	2013, 23, 8001104-8001104.		
102	Relationship between vortex pinning properties and microstructure in Ba–Nb–O-doped YBa2Cu3Oy and ErBa2Cu3Oy films. Physica C: Superconductivity and Its Applications, 2013, 494, 158-162.	1.2	3
103	Dependence of critical current properties on growth temperature and doping level of nanorods in PLD-YBa2Cu3Oy films. Physica C: Superconductivity and Its Applications, 2013, 494, 140-143.	1.2	1
104	Study on introduction of SN transition type FCL into distribution systems. Physica C: Superconductivity and Its Applications, 2013, 494, 324-330.	1.2	3
105	High critical current density and its magnetic fields dependence in (Sm,Eu,Gd)Ba2Cu3Oy films by using multiple targets. Physica C: Superconductivity and Its Applications, 2013, 484, 130-133.	1.2	2
106	Effect of substrate on thermoelectric properties of Al-doped ZnO thin films. Applied Physics Letters, 2013, 102, .	3.3	88
107	Flux Pinning Properties and Microstructures of Multilayered Films Consisting of Sm1.04Ba1.96Cu3OyLayers and BaSnO3-Doped Sm1.04Ba1.96Cu3OyLayers. Japanese Journal of Applied Physics, 2013, 52, 010201.	1.5	13
	Manakila fluorida aukatemptas fan Ealaand auronaand attis ettis ettis filma. Annitad Dhavita Lattana 2012		

108Versatile fluoride substrates for Fe-based superconducting thin films. Applied Physics Letters, 2013,
102, .3.345

#	Article	IF	CITATIONS
109	Microscopic analysis of the chemical reaction between Fe(Te, Se) thin films and underlying CaF ₂ . Superconductor Science and Technology, 2013, 26, 075002.	3.5	34
110	Intrinsic pinning and the critical current scaling of clean epitaxial Fe(Se,Te) thin films. Physical Review B, 2013, 87, .	3.2	51
111	Oxypnictide SmFeAs(O,F) superconductor: a candidate for high–field magnet applications. Scientific Reports, 2013, 3, 2139.	3.3	42
112	Improvement of JC Properties through Control of Nanorod Morphology. TEION KOGAKU (Journal of) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf 5
113	Relationship between critical current properties and nanorod morphology in REBa2Cu3Oy thin films. Materials Research Society Symposia Proceedings, 2012, 1434, 63.	0.1	0
114	Empirical Selection Rule of Substrate Materials for Iron Chalcogenide Superconducting Thin Films. Japanese Journal of Applied Physics, 2012, 51, 010104.	1.5	17
115	Nanostructured epitaxial thin films of Fe-based superconductors with enhanced superconducting properties. Materials Research Society Symposia Proceedings, 2012, 1434, 35.	0.1	2
116	Recent progress in high- <i>T</i> _C superconducting wires and their applications for electric power apparatus. IEICE Electronics Express, 2012, 9, 1172-1183.	0.8	3
117	An Explanation for Bends of 1-Dimensional Nanorods. Physics Procedia, 2012, 36, 1631-1636.	1.2	1
118	Study on introduction of SN transition type FCL into looped distribution system. Physica C: Superconductivity and Its Applications, 2012, 482, 92-97.	1.2	4
119	Fe–Te–Se epitaxial thin films with enhanced superconducting properties. Superconductor Science and Technology, 2012, 25, 084021.	3.5	36
120	Variation of applied field angular dependence of critical current density in YBCO thin films against deposition temperature and composition. Physics Procedia, 2012, 27, 236-239.	1.2	3
121	Growth-Temperature-Independent Nanostructure in (Y\$_{1-x}\$Er\$_{x}\$)Ba\$_{2}\$Cu\$_{3}\$O\$_{y}\$ Films with Ba–Nb–O Nanorods. Applied Physics Express, 2012, 5, 073102.	2.4	4
122	Empirical Selection Rule of Substrate Materials for Iron Chalcogenide Superconducting Thin Films. Japanese Journal of Applied Physics, 2012, 51, 010104.	1.5	19
123	Epitaxial Growth of FeSe _{0.5} Te _{0.5} Thin Films on CaF ₂ Substrates with High Critical Current Density. Applied Physics Express, 2011, 4, 053101.	2.4	93
124	Mobility Analysis of FeTe Thin Films. Journal of the Physical Society of Japan, 2011, 80, 023712.	1.6	17
125	Hall effect of FeTe and Fe(Se1–xTex) thin films. Physica C: Superconductivity and Its Applications, 2011, 471, 625-629.	1.2	20
126	Stable barium compounds in YBa2Cu3Oy superconductors. Physica C: Superconductivity and Its Applications, 2011, 471, 859-862.	1.2	3

#	Article	IF	CITATIONS
127	Epitaxial films of FeTe1â^'xSx fabricated by second harmonic Nd:YAG pulsed laser deposition. Physica C: Superconductivity and Its Applications, 2011, 471, 1185-1188.	1.2	11
128	Substrate Dependence of Structural and Transport Properties in FeSe _{0.5} Te _{0.5} Thin Films. Japanese Journal of Applied Physics, 2011, 50, 053101.	1.5	18
129	Substrate Dependence of Structural and Transport Properties in FeSe _{0.5} Te _{0.5} Thin Films. Japanese Journal of Applied Physics, 2011, 50, 053101.	1.5	21
130	Fabrication and characteristics of artificial SNS junctions using three axes orientation-controlled <i>α</i> -axis oriented Y123/Pr123 multilayer films. Journal of Physics: Conference Series, 2010, 234, 012044.	0.4	2
131	A trial of Fe(Se _{1â^'x} Te _x) thin film fabrication by pulsed laser deposition using ArF excimer laser. Journal of Physics: Conference Series, 2010, 234, 012051.	0.4	4
132	Magnetization relaxation in YBCO films with improved supercurrent transport properties. Journal of Physics: Conference Series, 2010, 234, 012026.	0.4	2
133	Microstructures of REBa2Cu3O7â^'y Films Doped with Artificial Pinning Center Fabricated by Vapor-Liquid-Solid Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 416-421.	0.4	1
134	Introduction of Artificial Pinning Centers to Improve Jc Properties of REBa2Cu3Oy Films under Magnetic Fields. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 409-415.	0.4	1
135	Formation Mechanism of BaZrO3 Nanorods in SmBa2Cu3Oy Thin Films. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 422-427.	0.4	1
136	Origin of the fast magnetization relaxation at low temperatures in HTS with strong pinning. Physica C: Superconductivity and Its Applications, 2010, 470, 1126-1129.	1.2	1
137	Growth mechanism of nanorods in REBa2Cu3Oy films (RE: rare-earth element). Journal of Crystal Growth, 2010, 312, 2914-2918.	1.5	2
138	Pulsed laser deposition and in-field characterization of FeTe0.8S0.2 epitaxial thin films with enhanced superconducting properties. Physica C: Superconductivity and Its Applications, 2010, 470, 1033-1037.	1.2	5
139	Effects of indium doping on the superconducting properties of YBa2Cu3Oy sintered compounds and thin films. Physica C: Superconductivity and Its Applications, 2010, 470, 1198-1200.	1.2	2
140	Structural investigation of the BaSnO3–YBa2Cu3O7â^'x system. Physica C: Superconductivity and Its Applications, 2010, 470, 1304-1307.	1.2	2
141	In-field characterization of FeTe _{0.8} S _{0.2} epitaxial thin films with enhanced superconducting properties. Superconductor Science and Technology, 2010, 23, 052001.	3.5	30
142	Relationship between surface structure and one-dimensional nanorod growth in ErBa ₂ Cu ₃ 0 _{7â~î´} films on vicinal SrTi0 ₃ substrates. Journal of Physics: Conference Series, 2010, 234, 012022.	0.4	1
143	Flux pinning properties and microstructure of SmBa2Cu3Oy thin films with systematically controlled BaZrO3 nanorods. Journal of Applied Physics, 2010, 108, 093905.	2.5	45
144	INFLUENCE OF COATING SOLUTION COMPOSITION ON REBa ₂ Cu ₃ O _y (RE = Gd AND Sm , Eu , Gd) FILMS FABRICATED BY FLUORINE-FREE METALâ€"ORGANIC DEPOSITION. Modern Physics Letters B, 2010, 24, 1165-11	1.9 172.	2

#	Article	IF	CITATIONS
145	The effects of growth temperature onc-axis-correlated pinning centers in PLD-ErBa2Cu3O7â^îfilms with Ba(Er0.5Nb0.5)O3. Superconductor Science and Technology, 2010, 23, 025017.	3.5	22
146	Superconducting properties of Sm0.33Eu0.33Gd0.33Ba2Cu3Oy films by metal-organic deposition using metal 2-ethylhexanates. Physica C: Superconductivity and Its Applications, 2010, 470, 1249-1252.	1.2	0
147	Matching field effects inc-axis in-plane aligneda-axis-oriented YBa2Cu3Oyfilms with two-dimensional artificial pinning centers induced by multilayered nano-structures. Superconductor Science and Technology, 2010, 23, 045023.	3.5	5
148	Systematic Comparison of Eight Substrates in the Growth of FeSe _{0.5} Te _{0.5} Superconducting Thin Films. Applied Physics Express, 2010, 3, 043102.	2.4	100
149	An Attempt to Arrange BZO Nanorods Into ErBCO Thin Films. IEEE Transactions on Applied Superconductivity, 2009, 19, 3420-3422.	1.7	1
150	Flux Pinning Characteristics of Artificial Pinning Centers With Different Dimension. IEEE Transactions on Applied Superconductivity, 2009, 19, 3248-3253.	1.7	8
151	Influence of Growth Temperature on Microstructure and Superconducting Properties of \${m ErBa}_{2}{m Cu}_{3}{m O}_{7-delta}\$ Films With \${m Ba}({m Er}_{0.5}{m Nb}_{0.5}){m O}_{3}\$ Nanorods. IEEE Transactions on Applied Superconductivity, 2009, 19, 3435-3438.	1.7	2
152	Improved Flux Pinning in Nanostructured REBCO Films Controlling the APC Growth Mechanism. IEEE Transactions on Applied Superconductivity, 2009, 19, 3262-3265.	1.7	4
153	Growth of \${m BaSnO}_{3}\$ Doped \${m ErBa}_{2}{m Cu}_{3}{m O}_{7-delta}\$ Thin Films on MgO Substrates for High \${mmb J}_{f C}\$ Applications. IEEE Transactions on Applied Superconductivity, 2009, 19, 3416-3419.	1.7	Ο
154	Microstructures of REBa2Cu3Oy films containing artificial pinning centers of various dimensions. Physica C: Superconductivity and Its Applications, 2009, 469, 1374-1379.	1.2	7
155	Systematic study of BaSnO3 doped YBa2Cu3O7â^'x films. Physica C: Superconductivity and Its Applications, 2009, 469, 1380-1383.	1.2	35
156	Effects of RE2O3 (RE=Tm, Sc, Yb) addition on the superconducting properties of ErBa2Cu3Oy. Physica C: Superconductivity and Its Applications, 2009, 469, 1157-1160.	1.2	3
157	Fabrication and characterization of (Nd,Eu,Gd)Ba2Cu3Oy films by metal-organic deposition using TFA-containing solutions without introduction of water vapor. Physica C: Superconductivity and Its Applications, 2009, 469, 1353-1356.	1.2	1
158	Crystal growth mechanism of VLS-Sm1+xBa2â^'xCu3Oy films including self-assembled BaZrO3 nanorods. Physica C: Superconductivity and Its Applications, 2009, 469, 1414-1417.	1.2	2
159	A research for improvement of crystallinity and critical temperature by oxygen pressure in ErBa2Cu3O7â^δfilms. Physica C: Superconductivity and Its Applications, 2009, 469, 1384-1387.	1.2	Ο
160	Surface morphology and microstructure of Sm1+xBa2â^'xCu3Oy thin films including self-organized columnar pinning centers. Physica C: Superconductivity and Its Applications, 2009, 469, 1388-1391.	1.2	7
161	Flux pinning properties of nano-rods comprised of BaMO3 (M=Zr, Sn) in REBa2Cu3O7â [~] Î [~] thin films prepared by PLD method. Physica C: Superconductivity and Its Applications, 2009, 469, 1396-1399.	1.2	5
162	Effects of the APC materials on c-axis correlated pinning effects in a-axis oriented Y123/2D APC multilayer films. Physica C: Superconductivity and Its Applications, 2009, 469, 1545-1549.	1.2	3

#	Article	IF	CITATIONS
163	Reciprocal space mapping of BaZrO3 within (Nd,Eu,Gd)Ba2Cu3Oy films prepared by various film growth techniques. Physica C: Superconductivity and Its Applications, 2009, 469, 1400-1403.	1.2	1
164	Jc of Sm1+xBa2â^'xCu3Oy films improved in the whole angle range by introducing BaZrO3 nanoparticles. Physica C: Superconductivity and Its Applications, 2009, 469, 1392-1395.	1.2	9
165	Flux Pinning Characteristics of \${m Sm}_{1+x}{m Ba}_{2-x}{m Cu}_{3}{m O}_{y}\$ Films With the Additional \$c\$-Axis Correlated Pinning Centers. IEEE Transactions on Applied Superconductivity, 2009, 19, 3507-3510.	1.7	6
166	Effect of \${m BaZrO}_{3}\$ Addition and Film Growth on Superconducting Properties of \$({m) Tj ETQq0 0 0 rgBT superconductivity, 2009, 19, 3144-3147.		10 Tf 50 621 0
167	Flux Pinning Properties and Microstructure in \${m Sm}_{1+x}{m Ba}_{2-x}{m Cu}_{3}{m O}_{y}\$ Films With \${m BaZrO}_{3}\$ Nanorods Fabricated by Vapor-Liquid-Solid Growth Technique. IEEE Transactions on Applied Superconductivity, 2009, 19, 3168-3171.	1.7	6
168	Vortex Behaviors Near Irreversibility Fields of \$a\$-Axis Oriented Y123 Films Inserted Pr123 Layers. IEEE Transactions on Applied Superconductivity, 2009, 19, 3499-3502.	1.7	1
169	Control of the glass-liquid transition temperature in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>YBa </mml:mtext> </mml:mrow> <mml:mn>2 Physical Review B. 2009. 79</mml:mn></mml:msub></mml:mrow></mml:math 	2 <i>∛/m</i> ml:mr	n}≷/mml:rns
170	Flux-pinning Properties and Microstructure in SmBa2Cu3Oy Thin Films with BaZrO3 Nanorods. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2009, 44, 549-557.	0.1	4
171	Perovskite Structures in the Formation of Nano-rods in REBa2Cu3O7DELTA. Films Self-organization to perovskite structures. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2009, 44, 25-31.	0.1	1
172	Recent Progress in the Superconductivity Research Field -Application of Superconducting Tapes and Discovery of New Materials IEEJ Transactions on Fundamentals and Materials, 2009, 129, 78-80.	0.2	0
173	Effects of Growth Conditions on One-dimensional Nanorod Growth in REBa2Cu3O7-δFilms. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2009, 44, 535-542.	0.1	5
174	Critical temperature of LaBa2Cu3Oy thin films by vapor–liquid–solid growth technique improved by the composition ratio in liquid phase. Physica C: Superconductivity and Its Applications, 2008, 468, 1575-1578.	1.2	3
175	A research for controlling nanorod diameter in BaNb2O6 doped REBa2Cu3O7â~î´ films. Physica C: Superconductivity and Its Applications, 2008, 468, 1861-1863.	1.2	3
176	Enhancement of critical temperature of LaBa2Cu3Oy thin films by novel film growth technique. Physica C: Superconductivity and Its Applications, 2008, 468, 1623-1626.	1.2	1
177	Characterization of nanorods in BaNb2O6-doped Er123 films revealed by cross-sectional transmission electron microscopy. Physica C: Superconductivity and Its Applications, 2008, 468, 1638-1642.	1.2	10
178	Superconducting properties of ErBCO films with BaMO3 nanorods (M=Zr and Sn) by pulsed laser deposition. Physica C: Superconductivity and Its Applications, 2008, 468, 1522-1526.	1.2	18
179	Superconducting properties of GdBa2Cu3Oy films by metal–organic deposition using new fluorine-free complex solutions. Physica C: Superconductivity and Its Applications, 2008, 468, 1542-1545.	1.2	11
180	Progress in development of advanced PLD process for high Jc REBCO film. Physica C: Superconductivity and Its Applications, 2008, 468, 1606-1610.	1.2	23

#	Article	IF	CITATIONS
181	Flux pinning properties of Sm1+xBa2â^xCu3Oy films with BaZrO3 nanorods fabricated by low-temperature growth technique. Physica C: Superconductivity and Its Applications, 2008, 468, 1615-1618.	1.2	10
182	Microstructures of REBa2Cu3Oy adding BaZrO3 or BaSnO3. Physica C: Superconductivity and Its Applications, 2008, 468, 1627-1630.	1.2	19
183	Electrical transport properties of Y123 films with 2-D apcs. Physica C: Superconductivity and Its Applications, 2008, 468, 1851-1853.	1.2	6
184	Effects of growth temperature for superconducting properties and microstructures of PLD-ErBa2Cu3O7â^î^ film with BaNb2O6. Physica C: Superconductivity and Its Applications, 2008, 468, 1854-1857.	1.2	15
185	Growth of BaSnO3 doped ErBa2Cu3O7â^îî´thin films for high JC applications. Physica C: Superconductivity and Its Applications, 2008, 468, 1858-1860.	1.2	8
186	Stability of barium oxides in REBa2Cu3Oy superconductors. Physica C: Superconductivity and Its Applications, 2008, 468, 1391-1394.	1.2	13
187	Flux pinning properties of REBa2Cu3Oy thin films with BaZrO3 nano-rods. Physica C: Superconductivity and Its Applications, 2008, 468, 1635-1637.	1.2	3
188	Critical current properties at low angle grain boundaries in ErBa2Cu3Oy films. Physica C: Superconductivity and Its Applications, 2008, 468, 1670-1673.	1.2	0
189	Incorporation of double artificial pinning centers in YBa2Cu3O7â^'δ films. Physica C: Superconductivity and Its Applications, 2008, 468, 1631-1634.	1.2	9
190	Fabrication and characterization of BaSnO3-doped NdBa2Cu3O7â^δthin film. Physica C: Superconductivity and Its Applications, 2008, 468, 1864-1868.	1.2	5
191	Superconducting properties in magnetic field of (Nd, Eu, Gd)1+xBa2â^'xCu3Oy thin films prepared by low temperature growth technique. Physica C: Superconductivity and Its Applications, 2008, 468, 1611-1614.	1.2	6
192	Systematic study of the BaSnO ₃ insertion effect on the properties of YBa ₂ Cu ₃ O _{7â``<i>x</i>} films prepared by pulsed laser ablation. Superconductor Science and Technology, 2008, 21, 125017.	3.5	72
193	Ultra-high flux pinning properties of BaMO ₃ -doped YBa ₂ Cu ₃ O _{7â^'<i>x</i>} thin films (M = Zr, Sn). Superconductor Science and Technology, 2008, 21, 032002.	3.5	237
194	The crossover from the vortex glass to the Bose glass in nanostructured YBa2Cu3O7â^'x films. Applied Physics Letters, 2008, 92, 182511.	3.3	30
195	Vortex Bose glass in ErBa2Cu3Oy films with size-controlled nanorods. Applied Physics Letters, 2008, 93, 152506.	3.3	33
196	Transmission Electron Microscopy Analysis of Nanorods in BaSnO3-Doped ErBa2Cu3O7-Î Films. Japanese Journal of Applied Physics, 2008, 47, 899-903.	1.5	11
197	Incorporation of double artificial pinning centers in YBa ₂ Cu ₃ O _{7â^'<i>d</i>} films. Superconductor Science and Technology, 2008, 21, 015019.	3.5	38
198	Two-dimensional vortex-pinning phenomena in YBa2Cu3Oy films. Applied Physics Letters, 2008, 92, 132502.	3.3	14

#	ARTICLE	IF	CITATIONS
199	in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="normal">Y</mml:mi><mml:msub><mml:mi mathvariant="normal">Ba<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">Cu<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi< td=""><td>3.2</td><td>18</td></mml:mi<></mml:msub></mml:mrow></mml:math>	3.2	18
200	mathyariant="normal">Ox/mml:mi>xmml:mrow>xmml:mn>7x/mml:mn>xmml:mo>a"x/mml:mo>xmml:mo>x/mml:mo>xmml:mo>x/m Transmission electron microscopy characterization of nanorods in BaNb2O6-doped ErBa2Cu3O7â^'Î films. Applied Physics Letters, 2008, 92, .	mml:mi> <br 3.3	mml:mrow>< 27
201	Superconducting properties and microstructure of PLD-ErBa ₂ Cu ₃ O _{7-δ} films with BaNb ₂ O ₆ . Journal of Physics: Conference Series, 2008, 97, 012143.	0.4	1
202	A novel 2-dimensional artificial pinning center. Journal of Physics: Conference Series, 2008, 97, 012153.	0.4	0
203	Progress towards nanostructured SmBCO film for controlling pinning properties. Journal of Physics: Conference Series, 2008, 97, 012021.	0.4	3
204	Microstructures of High-\${m T}_{m C}\$ Superconducting Films Introduced Zero-Dimensional and One-Dimensional Artificial Pinning Centers. IEEE Transactions on Applied Superconductivity, 2007, 17, 3701-3704.	1.7	0
205	Enhanced Critical Current under a Magnetic Field in Sm1+xB2-xCu3OyThick Films Prepared Using Low-temperature Growth Technique. Japanese Journal of Applied Physics, 2007, 46, L807-L809.	1.5	4
206	GROWTH OF GdBa ₂ Cu ₃ O _y FILMS PREPARED BY BaF ₂ PROCESS WITHOUT WATER VAPOR. Modern Physics Letters B, 2007, 21, 1377-1382.	1.9	1
207	Enhancement of Critical Current in \${m Sm}_{1+x}{m B}_{2-x}{m Cu}_{3}{m O}_{y}\$ Multilayer Films With the Insertion of Sm-Rich Phase. IEEE Transactions on Applied Superconductivity, 2007, 17, 3270-3273.	1.7	4
208	Enhanced high-field performance in PLD films fabricated by ablation of YSZ-added YBa2Cu3O7â^'xtarget. Superconductor Science and Technology, 2007, 20, 244-250.	3.5	62
209	Matching field effect of the vortices in GdBa2Cu3O7â [~] δthin film with gold nanorods. Superconductor Science and Technology, 2007, 20, 303-306.	3.5	51
210	Introduction of <i>c</i> -axis-correlated 1D pinning centers and vortex Bose glass in Ba–Nb–O-doped ErBa ₂ Cu ₃ O _{<i>y</i>} films. Superconductor Science and Technology, 2007, 20, 1115-1119.	3.5	57
211	Moiré Fringe Analysis of BaZrO3Nanorods in ErBa2Cu3O7-Î'Films. Japanese Journal of Applied Physics, 2007, 46, 708-711.	1.5	14
212	Magnetic-field-induced crossover from flux-flow to Josephson-junction behavior in a highly transparent weak link. Physical Review B, 2007, 75, .	3.2	16
213	Fabrication of Thick \$hbox{YBa}_{2}hbox{Cu}_{3}hbox{O}_{7-{m x}} Films on Optimized \$hbox{SrTiO}_{3}\$ Buffered-MgO Single Crystals. IEEE Transactions on Applied Superconductivity, 2007, 17, 3713-3716.	1.7	4
214	Magnetic Field Dependence of Critical Current Density and Microstructure in \${m Sm}_{1+x}{m Ba}_{2-x}{m Cu}_{3}{m O}_{y}\$ Films on Metallic Substrates. IEEE Transactions on Applied Superconductivity, 2007, 17, 3247-3250.	1.7	13
215	Microstructure and \$J_{m C}\$ Characteristics of Er123 Films With Artificial Pinning Centers. IEEE Transactions on Applied Superconductivity, 2007, 17, 3688-3691.	1.7	2
216	Vortex Pinning by Gold Nanorods in \${m GdBa}_{2}{m Cu}_{3}{m O}_{7-delta}\$ Thin Films. IEEE Transactions on Applied Superconductivity, 2007, 17, 3729-3732.	1.7	4

#	Article	IF	CITATIONS
217	The Mechanism for the Formation of a-Axis Phase in High-Jc Sm1+xBa2-xCu3Oy Thick Films Prepared by Low Temperature Growth Technique. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 999-1005.	0.4	3
218	REBa2Cu3O7-δ系線æãëãe®é«~Jc化. Materia Japan, 2007, 46, 581-586.	0.1	0
219	Insertion of nanoparticulate artificial pinning centres in YBa2Cu3O7â^²xfilms by laser ablation of a Y2O3-surface modified target. Superconductor Science and Technology, 2007, 20, 616-620.	3.5	69
220	Microstructures and critical current densities of YBCO films containing structure-controlled BaZrO ₃ nanorods. Superconductor Science and Technology, 2007, 20, 1144-1150.	3.5	88
221	The limitation mechanism of Jc–Î, characteristics in YBa2Cu3O7â^'x thin film with a single low angle grain boundary. Physica C: Superconductivity and Its Applications, 2007, 463-465, 678-681.	1.2	9
222	YBa2Cu3O7â^'x+YSZ mixed films with enhanced critical current densities in magnetic field. Physica C: Superconductivity and Its Applications, 2007, 463-465, 653-656.	1.2	2
223	Current-carrying property and microstructure of multilayered Sm1+xBa2â^'xCu3Oy thick films. Physica C: Superconductivity and Its Applications, 2007, 463-465, 649-652.	1.2	6
224	Flux pinning properties in high magnetic field and low temperature of SmBa2Cu3Oy thin films. Physica C: Superconductivity and Its Applications, 2007, 463-465, 639-643.	1.2	5
225	Critical current properties and microstructures in impurity-doped ErBa2Cu3Oy films. Physica C: Superconductivity and Its Applications, 2007, 463-465, 922-926.	1.2	7
226	Microstructures of BaZrO3-doped ErBa2Cu3Oy films fabricated by different BaZrO3 supply. Physica C: Superconductivity and Its Applications, 2007, 463-465, 657-660.	1.2	0
227	Pulsed laser deposition of ErBa2Cu3O7â^î^ films with BaZrO3 nano-particles by using a novel target. Physica C: Superconductivity and Its Applications, 2007, 463-465, 900-903.	1.2	7
228	Characteristics of ErBa2Cu3O7â^`î´ films with BaWO4 doping. Physica C: Superconductivity and Its Applications, 2007, 463-465, 909-913.	1.2	6
229	Enhanced superconducting performances in nanostructured SmBCO coated conductor. Physica C: Superconductivity and Its Applications, 2007, 463-465, 633-638.	1.2	4
230	Fabrication of GdBa2Cu3Oy films by metal-organic deposition using metal-naphthenates. Physica C: Superconductivity and Its Applications, 2007, 463-465, 540-543.	1.2	13
231	Enhancement of dislocation density in YBa2Cu3Oy thin films prepared by low temperature growth technique. Physica C: Superconductivity and Its Applications, 2007, 463-465, 644-648.	1.2	5
232	Superconducting properties and microstructure of PLD-ErBa2Cu3O7â^'δ film with BaNb2O6. Physica C: Superconductivity and Its Applications, 2007, 463-465, 895-899.	1.2	21
233	A new approach to a two-dimensional artificial pinning center. Physica C: Superconductivity and Its Applications, 2007, 463-465, 904-908.	1.2	8
234	Orientation and Crystal Growth Mode in Sm1+xBa2-xCu3Oy Films Prepared by a Low Temperature Growth Technique. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2007, 42, 47-55.	0.1	4

#	Article	IF	CITATIONS
235	Superconducting properties of REBa2Cu3Oy (RE=Y and Gd) films prepared by BaF2 process without water vapor. Physica C: Superconductivity and Its Applications, 2006, 445-448, 587-589.	1.2	1
236	Controlled nanoparticulate flux pinning structures in RE1+xBa2â^'xCu3Oy films. Physica C: Superconductivity and Its Applications, 2006, 445-448, 637-642.	1.2	11
237	Addition of low-Tc nanoparticles dispersions to enhance flux pinning of Sm1+xBa2â^xCu3Oy films. Physica C: Superconductivity and Its Applications, 2006, 445-448, 643-647.	1.2	12
238	Evaluation of metallic nanoparticles in REBa2Cu3O7â~î^ (RE=Y, Gd) thin films by small angle X-ray scattering. Physica C: Superconductivity and Its Applications, 2006, 445-448, 652-655.	1.2	8
239	Critical current enhancement in PLD YBa2Cu3O7â^'x films using artificial pinning centers. Physica C: Superconductivity and Its Applications, 2006, 445-448, 648-651.	1.2	16
240	Comparative study of carrier concentration and reciprocal space mapping in SmBa2Cu3Oy thin films with high critical current density. Physica C: Superconductivity and Its Applications, 2006, 445-448, 689-693.	1.2	4
241	Dilute Co-doping effects on critical current properties in PLD-ErBa2Cu3Oy films. Physica C: Superconductivity and Its Applications, 2006, 445-448, 837-840.	1.2	6
242	Improvement of superconducting properties by BaTiO3 doping into ErBa2Cu3O7â^î^ films. Physica C: Superconductivity and Its Applications, 2006, 445-448, 841-844.	1.2	3
243	Surface resistance of RE123 films with artificial pinning centers. Physica C: Superconductivity and Its Applications, 2006, 445-448, 828-832.	1.2	1
244	TEM observation of ErBa2Cu3O7â^î^ films with BaZrO3 artificial pinning centers. Physica C: Superconductivity and Its Applications, 2006, 445-448, 660-664.	1.2	6
245	Effects of BaZrO3 dispersion into EuBa2Cu3O7â ^{~^} Î′ superconducting thin films. Physica C: Superconductivity and Its Applications, 2006, 445-448, 845-848.	1.2	10
246	Effect of Ta2O5 addition on the superconducting properties of REBa2Cu3Oy. Physica C: Superconductivity and Its Applications, 2006, 445-448, 391-394.	1.2	2
247	c-Axis-Correlated Vortex Pinning Center Induced by Dilute Co-doping in Pulsed-Laser-Deposition-ErBa2Cu3OyFilms. Japanese Journal of Applied Physics, 2006, 45, L617-L620.	1.5	6
248	Tuning of the critical current in YBa2Cu3O7â^'xthin films by controlling the size and density of Y2O3nanoislands on annealed SrTiO3substrates. Superconductor Science and Technology, 2006, 19, 44-50.	3.5	57
249	Flux pinning properties of ErBa2Cu3Oythin films with BaZrO3nanorods. Superconductor Science and Technology, 2006, 19, 803-807.	3.5	32
250	Possibility of High Deposition Rate in SmBa2Cu3OyFilms Prepared Using the Vapor–Liquid–Solid Growth Mode. Japanese Journal of Applied Physics, 2006, 45, 758-760.	1.5	11
251	Enhancement of Flux-Pinning in Epitaxial Sm1+xBa2-xCu3OyFilms by Introduction of Low-TcNanoparticles. Japanese Journal of Applied Physics, 2006, 45, L11-L13.	1.5	46
252	Combined effect of a single grain boundary and artificial pinning centers on the critical current density in a YBa2Cu3O7â^δthin film. Applied Physics Letters, 2006, 89, 172505.	3.3	9

#	Article	IF	CITATIONS
253	SUPERCONDUCTING PROPERTIES AND ORIENTATION BEHAVIOR OF REBa2Cu3Oy (RE = Yb, Er, Sm, Nd and La) FILMS BY METAL-ORGANIC DEPOSITION. Modern Physics Letters B, 2006, 20, 705-713.	1.9	7
254	Dislocation Density and Critical Current Density of Sm1+xBa2-xCu3OyFilms Prepared by Various Fabrication Processes. Japanese Journal of Applied Physics, 2006, 45, L701-L704.	1.5	30
255	Superconducting Characteristics of ErBa2Cu3O7DELTA. Films with BaZrO3 Nano-rods in a Magnetic Field. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2006, 41, 123-130.	0.1	0
256	Effect of AZrO3 and AWO4 (A=Ba, Sr and Ca) addition on the superconducting properties of ErBa2Cu3Oy. Physica C: Superconductivity and Its Applications, 2005, 426-431, 550-555.	1.2	5
257	Low surface resistance Zn-doped ErBa2Cu3O7â^î^ thin films. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1611-1615.	1.2	8
258	Growth and characterization of a-axis oriented ErBa2Cu3O7â^'δ films using double buffer layers. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1424-1428.	1.2	6
259	Jc Characteristics in high magnetic field and microstructure of RE1+xBa2â^'xCu3O6+y films. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1043-1050.	1.2	23
260	In-plane alignment and superconducting properties in high-Jc Sm1+xBa2â^'xCu3O6+δ thin films. Physica C: Superconductivity and Its Applications, 2005, 426-431, 985-989.	1.2	14
261	Effects of artificial pinning centers on vortex pinning in high-temperature superconducting films. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1091-1095.	1.2	24
262	Microstructure of ErBa2Cu3O7â~`î´ films with BaZrO3 dispersion pinning centers for high JC applications. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1415-1418.	1.2	13
263	Growth of EuBa2Cu3O7â^'δ films under an ozone atmosphere. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1429-1433.	1.2	2
264	Crystal distortion associated with ortho–tetra transition of REBa2Cu3Ox films. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1010-1014.	1.2	1
265	Oxygen post-annealing effects on critical current properties of PLD-ErBa2Cu3Oy films grown at several substrate temperatures. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1015-1020.	1.2	5
266	Control of Y2O3 nanoislands deposition parameters in order to induce defects formation and its influence on the critical current density of YBCO films. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1108-1112.	1.2	6
267	Effect of substituted rare earth element in (Yb1â^'xNdx)Ba2Cu3Oy thin film on growth orientation and superconducting properties. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1005-1009.	1.2	6
268	High Critical Current Density in High Field in <tex>\$rm Sm_1+rm xrm Ba_2-rm xrm Cu_3rm O_6+rm y\$</tex> Thin Films. IEEE Transactions on Applied Superconductivity, 2005, 15, 2727-2730.	1.7	35
269	High-Critical-Current-Density SmBa2Cu3O7-xFilms Induced by Surface Nanoparticle. Japanese Journal of Applied Physics, 2005, 44, L546-L548.	1.5	51
270	Control of Y2O3 nano-islands density to introduce artificial pinning centers in YBCO thin films. Materials Research Society Symposia Proceedings, 2005, 868, 8141.	0.1	0

#	Article	IF	CITATIONS
271	Anisotropy and Lorentz-Force Dependences of Critical Current Density inC-Axis-Oriented YBa2Cu3O7-ÎThin Film. Japanese Journal of Applied Physics, 2005, 44, L111-L113.	1.5	6
272	Hetero-Epitaxial Growth of CeO2Films on MgO Substrates. Japanese Journal of Applied Physics, 2005, 44, L318-L321.	1.5	9
273	Critical Current Density Enhancement around a Matching Field in ErBa2Cu3O7-ÎFilms with BaZrO3Nano-Rods. Japanese Journal of Applied Physics, 2005, 44, L952-L954.	1.5	78
274	High- <tex>\$J_c\$</tex> Gd-Ba-Cu-O Epitaxial Films Prepared by Pulsed Laser Deposition. IEEE Transactions on Applied Superconductivity, 2005, 15, 2719-2722.	1.7	30
275	<tex>\$J_c\$</tex> Enhancement in <tex>\$rm YBa_2rm Cu_3rm O_rm x\$</tex> Thin Films by Introduction of One-Dimensional Artificial Pinning Centers. IEEE Transactions on Applied Superconductivity, 2005, 15, 3774-3777.	1.7	9
276	Research & Development of Superconducting Fault Current Limiter in Japan. IEEE Transactions on Applied Superconductivity, 2005, 15, 1978-1981.	1.7	43
277	Research and Development of High- <tex>\$rm T_c\$</tex> SMES. IEEE Transactions on Applied Superconductivity, 2005, 15, 1947-1950.	1.7	7
278	Fabrication of <tex>\$a/c\$</tex> Axes Oriented Grain Boundaries in YBCO Films by Selective Growth. IEEE Transactions on Applied Superconductivity, 2005, 15, 2935-2938.	1.7	8
279	Microstructure and Field Angle Dependence of Critical Current Densities in <tex>\$rm REBa_2rm Cu_3rm O_rm y\$</tex> Thin Films Prepared by PLD Method. IEEE Transactions on Applied Superconductivity, 2005, 15, 3730-3733.	1.7	4
280	Angular Dependence of Critical Current Density in Y-Ba-Cu-O Thin Films. IEEE Transactions on Applied Superconductivity, 2005, 15, 3734-3737.	1.7	5
281	Effect of Sm/Ba Substitution on the <tex>\$J_c\$</tex> in Magnetic Field of SmBCO Thin Films by Low Temperature Growth Technique. IEEE Transactions on Applied Superconductivity, 2005, 15, 3078-3081.	1.7	32
282	Critical Current Control in YBa2Cu3O7-Î Films Using Artificial Pinning Centers. Japanese Journal of Applied Physics, 2005, 44, L246-L248.	1.5	116
283	YBCO Thin Films on <tex>\$rm TiO_2\$</tex> Buffer Layer Deposited by RF Magnetron Sputtering. IEEE Transactions on Applied Superconductivity, 2005, 15, 3028-3030.	1.7	3
284	Microstructures of High- <tex>\$rm T_c\$</tex> Superconducting Films Having Artificial Pinning Centers. IEEE Transactions on Applied Superconductivity, 2005, 15, 3718-3721.	1.7	3
285	High-Critical-Current-Density Epitaxial Films of SmBa2Cu3O7-xin High Fields. Japanese Journal of Applied Physics, 2005, 44, L129-L132.	1.5	55
286	Feasibility Study on High-Tc SMES. TEION KOGAKU (Journal of Cryogenics and Superconductivity) Tj ETQq0 0 0 r	rgBT /Over 0.1	lock 10 Tf 50
287	Reduction of Surface Resistance of ErBa2Cu3O7-δFilms by BaZrO3Nano-Particle Inclusion. Japanese Journal of Applied Physics, 2004, 43, L1623-L1625.	1.5	19

288Enhancement of Critical Current Density in ErBa2Cu3OyThin Films by Post-Annealing. Japanese Journal
of Applied Physics, 2004, 43, L1223-L1225.1.522

#	Article	IF	CITATIONS
289	Microstructures and Critical Current Properties for YBCO Films Prepared by No-Additional-Water Annealing of Pre-Cursor Films Depoisted Y, BaF2 and Cu. AIP Conference Proceedings, 2004, , .	0.4	0
290	Post-annealing effects of superconducting properties on ErBa2Cu3Oy films fabricated by pulsed laser deposition. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1306-1309.	1.2	8
291	Preparation of YBa2Cu3O7â^'x films on cap-layer-buffered MgO substrates using precursor films deposited from Y, BaF2 and Cu. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1321-1325.	1.2	0
292	Flux pinning properties of YBCO thin films deposited on SrTiO3(100) and MgO(100) substrates. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1291-1295.	1.2	14
293	Low temperature growth of high-Jc Sm1+xBa2â^'xCu3Oy films. Physica C: Superconductivity and Its Applications, 2004, 412-414, 833-837.	1.2	47
294	Evaluation of buffer materials for fluorine contained solid phase epitaxy of 123 films on MgO substrates. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1316-1320.	1.2	2
295	Selective preferred orientation control of YBa2Cu3O7â^î^films on a substrate. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1296-1300.	1.2	12
296	Enhancement of critical current density of YBCO films by introduction of artificial pinning centers due to the distributed nano-scaled Y2O3 islands on substrates. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1267-1271.	1.2	123
297	Growth of high-quality ErBa2Cu3O7â^î thin films. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1301-1305.	1.2	15
298	Oxygen-Annealing Effects on Superconducting Properties of ErBa2Cu3Oy Thin Films Fabricated by Pulsed Laser Deposition Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004, 68, 748-755.	0.4	1
299	Crystal Orientation and Microstructure of CeO2 Thin Films Grown on Biaxially Textured Metallic Substrates. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004, 68, 730-736.	0.4	2
300	J Characteristics in High Magnetic Field of RE1+xBa2-xCu3O6+y Films prepared by Pulsed Laser Deposition. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2004, 68, 737-741.	0.4	0
301	Preparation and microstructures of high-current density YBCO films by no-water post-annealing of precursor films including BaF2. Physica C: Superconductivity and Its Applications, 2003, 392-396, 927-931.	1.2	Ο
302	Microstructures of YBa/sub 2/Cu/sub 3/O/sub 7-X/ films prepared by low-pressure oxygen atmosphere post-annealing of precursor films using Y, BaF/sub 2/ and Cu. IEEE Transactions on Applied Superconductivity, 2003, 13, 2520-2523.	1.7	1
303	High-JcYBa2Cu3O7Âxfilms obtained by no-additional-water annealing of precursor films deposited from Y, BaF2and Cu. Superconductor Science and Technology, 2003, 16, 398-401.	3.5	4
304	Crystallinity of YBa2Cu3O7DELTA. Thin Films on Various Buffer Layers for Microwave Devices. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2003, 38, 546-553.	0.1	0
305	Investigation of YBCO film growth by post-annealing of precursor films including BaF2at low-pressure oxygen atmosphere. Superconductor Science and Technology, 2002, 15, 262-268.	3.5	9
306	High-speed growth of YBCO films by post-annealing of precursor films. AIP Conference Proceedings, 2002, , .	0.4	2

#	Article	IF	CITATIONS
307	Microstructure of pulsed laser deposited YBa2Cu3O7â~Î^ films on yttria-stabilized zirconia/CeO2 buffered biaxially textured Ni substrates. Physica C: Superconductivity and Its Applications, 2002, 377, 333-347.	1.2	6
308	Microstructures of YBCO precursor films including BaF2 annealed at a low pressure of oxygen atmosphere. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1052-1055.	1.2	1
309	Preparation of YBCO films using precursor films including BaF2 through a new process. Physica C: Superconductivity and Its Applications, 2001, 357-360, 995-998.	1.2	5
310	Y-Ba-Cu-O film growth on Y/sub 2/O/sub 3/ buffered and nonbuffered SrTiO/sub 3/ single crystals using precursor films including fluoride. IEEE Transactions on Applied Superconductivity, 2001, 11, 2913-2916.	1.7	5
311	Microstructure of a high Jc, laser-ablated YBa2Cu3O7â^î∫sol–gel deposited NdGaO3 buffer layer/(001) SrTiO3 multi-layer structure. Physica C: Superconductivity and Its Applications, 2000, 331, 73-78.	1.2	11
312	Studies of the improvement in microstructure of Y2O3buffer layers and its effect on YBa2Cu3O7-xfilm growth. Superconductor Science and Technology, 2000, 13, 1023-1028.	3.5	11
313	Electromagnetic Connectivity and Microstructure in YBa ₂ Cu ₃ O _{7-δ} Films on Rolling-Assisted Biaxially-Textured Substrates. Materials Science Forum, 1999, 294-296, 165-168.	0.3	0
314	Preparation and characterization of Y/sub 2/O/sub 3/ buffer layers and YBCO films on textured Ni tape. IEEE Transactions on Applied Superconductivity, 1999, 9, 2280-2283.	1.7	8
315	Growth conditions and microstructure of Y2O3 buffer layers on cube-textured Ni. Physica C: Superconductivity and Its Applications, 1999, 324, 113-122.	1.2	14
316	Deposition of Y2O3 buffer layers on biaxially-textured metal substrates. Physica C: Superconductivity and Its Applications, 1998, 302, 51-56.	1.2	23
317	Microstructure of electron-beam-evaporated epitaxial yttria-stabilized zirconia/CeO2 bilayers on biaxially textured Ni tape. Physica C: Superconductivity and Its Applications, 1998, 307, 87-98.	1.2	42
318	Synthesis of Biaxially Aligned Y2O3 Buffer Layer Directly on Ni Tapes through the Electron Beam Deposition. , 1998, , 615-618.		1
319	Film growth and roughness of YBCO thin films shown by X-ray reflection and RHEED. Physica C: Superconductivity and Its Applications, 1997, 277, 243-251.	1.2	3
320	Comparison of the effects of various anticholinergic drugs on human isolated urinary bladder. Archives Internationales De Pharmacodynamie Et De ThA©rapie, 1995, 330, 76-89.	0.2	19
321	Structural properties of the nonsuperconductor (Ho, Ce)2(Sr, Ba, La)2Cu3O8+z. Physica C: Superconductivity and Its Applications, 1992, 191, 205-210.	1.2	2
322	Ba-free "223―layered copper oxides, (Ho, Ce)2Sr2Cu3O8+z and (Eu, Ce)2(Eu, Sr)2Cu3â^'xMxO8+z (Mî—»Fe	e, Ço) Tj ET 1.2	TQg0 0 0 rgB
323	Homologous compound series containing multiple-MO2-unit fluorite block, (Fe, Cu)Sr2 (Y,) Tj ETQq1 1 0.784314	rgBT /Ove	erlgck 10 TFS

Possibility of Superconductivity Destruction Caused by Neither the Reduction of Hole Concentration nor Impurity Doping. Springer Proceedings in Physics, 1992, , 421-423.

0.2 0

0

#	Article	IF	CITATIONS
325	Raman Scattering Spectra of (Sm2/3Ce1/3)2(Ba2/3Sm1/3)2Cu3O9. Journal of the Physical Society of Japan, 1991, 60, 1204-1207.	1.6	0
326	Crystal Chemistry of Copper-Based Oxide Superconductors and Related Compounds. Journal of the Ceramic Society of Japan, 1991, 99, 435-442.	1.3	19
327	Orthorhombic-tetragonal transition in non-superconducting (Tl1-xPbx)Sr2CuO5-w. Physica C: Superconductivity and Its Applications, 1991, 177, 153-158.	1.2	12
328	Pressure effect on Tc of (Yb0.7Ca0.3)(Ba0.8Sr0.2)2Cu3Oz with various oxygen contents. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1291-1292.	1.2	3
329	Layered copper oxide series, (Fe, Cu) Sr2 (Y, Ce)nCu2O4+2n+z, containing multiple-MO2-unit fluorite block. Physica C: Superconductivity and Its Applications, 1991, 185-189, 599-600.	1.2	0
330	Crystal structure and superconducting properties of layered copper oxides containing "123―block and single-MO2-unit fluorite block :. Physica C: Superconductivity and Its Applications, 1991, 185-189, 609-610.	1.2	1
331	Crystal chemistry of copper-based oxide superconductors and related compounds. Physica C: Superconductivity and Its Applications, 1991, 185-189, 729-730.	1.2	3
332	Neutron powder diffraction study of the Pb-based copper oxide containing thick fluorite blocks: (Pb,Cu)Sr2(Ho,Ce)3Cu2O11+z. Physica C: Superconductivity and Its Applications, 1991, 179, 455-460.	1.2	22
333	Crystal growth of superconducting (Eu,Ce)2(Ba,Eu)2Cu3O8+z. Journal of Crystal Growth, 1991, 114, 59-63.	1.5	1
334	New Tl-based copper oxide containing double-MO2-unit fluorite block: (Tl, Cu) Sr2 (R, Ce)3Cu2O11 (R:) Tj ETQq0	0 0 rgBT 1.2	/Oyerlock 10
335	Composition dependence of the pressure effect onTcin (Yb0.7Ca0.3)(Ba0.8Sr0.2)2Cu3Oz. Physical Review B, 1991, 44, 11971-11976.	3.2	15
336	Thermoelectric power of the (Eu,Ce)4(Ba,Eu)4Cu6Oyphase and theT*phase: Comparison between superconducting and nonsuperconducting compounds. Physical Review B, 1991, 43, 11508-11511.	3.2	18
337	Control of the hole concentration in theYBa2Cu3O6+z-type superconductors (Yb,Ca)(Ba,Sr)2Cu3O6+zwith low and high Ca contents. Physical Review B, 1991, 44, 2341-2347.	3.2	32
338	Phonon-scattering spectra of (Eu2/3Ce1/3)2(Ba2/3Eu1/3)2Cu3O9and (Er2/3Ce1/3)2(Ba2/3La1/3)2Cu3O9. Physical Review B, 1991, 44, 782-788.	3.2	5
339	Superconductive (Y1â^'xCax)Ba2Cu4O8 (x = 0.0 and 0.05) ceramics prepared by low and high oxygen partial pressure techniques. Journal of Materials Research, 1991, 6, 18-27.	2.6	11
340	Phonons in (Sm,Ce)2(Ba,Sm)2Cu3Ox. , 1991, , 215-218.		0
341	Microstructure and AC-Susceptibility of (Y,Ca)Ba2Cu4O8 Superconductors Prepared at Low (3 atm) and High (400 atm) Oxygen Pressure. , 1991, , 279-282.		0

342 X-Ray Rietveld Refinement of Orthorhombic and Tetragonal (Tl,Pb)Sr2CuO5â^'z., 1991, , 371-374.

#	Article	IF	CITATIONS
343	New Layered Copper Oxides Containing Double-MO2-Unit Fluorite Block. , 1991, , 327-330.		0
344	Orthorhombic nonsuperconductor (Gd, Ce)4(La, Ba)4Cu6O17.94. Physica C: Superconductivity and Its Applications, 1990, 171, 561-566.	1.2	0
345	New families of layered cuprates containing double-MO2-unit fluorite blocks: (Ho, Ce)3Sr2Cu3O11 and (Ho, Ce)3Sr2Cu2 (Cu, M)O11 (M = Pb, Fe, Al). Physica C: Superconductivity and Its Applications, 1990, 171, 344-347.	1.2	60
346	New superconducting cuprates (Pb, Cu)(Eu, Ce)2(Sr, Eu)2Cu2Oz. Physica C: Superconductivity and Its Applications, 1990, 169, 133-136.	1.2	93
347	Magnetic Properties of 40 K Class Oxide Superconductor (Gd, Ce)4(La, Ba, Sr)4Cu6O18.8. Japanese Journal of Applied Physics, 1990, 29, L43-L45.	1.5	5
348	Preparation and Properties of Superconducting [La1/6Ln1/3Ba1/6Sr1/6Ce1/6]8Cu6Oz(Ln=Eu, Gd, Dy, Ho) Tj ETQ	<u>)</u> qQQ0 rg	gBT /Qverlock
349	Phase Stability and Decomposition of Superconductive (Y1-xCax)Ba2Cu4O8(0= <x=<0.1). 1990,="" 29,="" applied="" japanese="" journal="" l915-l918.<="" of="" physics,="" td=""><td>1.5</td><td>35</td></x=<0.1).>	1.5	35
350	Tetragonal-Orthorhombic Structural Phase Transition in the (Gd2/3Ce1/3)4[La1/3(Ba1-xLax)2/3]4Cu6OzSystem. Japanese Journal of Applied Physics, 1990, 29, L426-L429.	1.5	3
351	Phase stability and decomposition of superconductive YBa2Cu4O8. Applied Physics Letters, 1990, 57, 81-83.	3.3	60
352	Preparation of the oxide superconductors (La,Gd,Ba,Ce)8Cu6Ozand (La,Gd,Ba,Sr,Ce)8Cu6Oz. Physical Review B, 1990, 41, 1984-1989.	3.2	17
353	Anomalous temperature dependence of Hall coefficients for (L2/3Ce1/3)4(La1/3Ba1/3Sr1/3)4Cu6Oy(L=Eu,) Tj ET	Qg1_1 0.	784314 rgBT
354	Structure and Superconducting Properties of [(Ln1-xLn*x)1/2(Ba1-ySry)1/3Ce1/6]8Cu6Oz. , 1990, , 63-68.		0
355	Superconducting Properties of (GdCe)4(LaBaSr)4Cu6O18.8. , 1990, , 627-630.		0
356	Preparation and Superconducting Properties of [Ln, Ce, (Ba1-xSrx)]8Cu6Oz(Ln=Nd, Sm and Eu). Japanese Journal of Applied Physics, 1989, 28, L1765-L1768.	1.5	23
357	Crystal Structure of New Oxide Superconductors, (Sm, Ba, Ce)8Cu6Oz, (Nd, Ba, Sr, Ce)8Cu6Oz, (La, Gd,) Tj ETQ	q1 <u>1</u> 0.78	4314 rgBT /C 20
358	Flow characteristics of single phase natural circulation in parallel channel 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 1989, 55, 182-187.	0.2	0
359	Syntheses and Characterization of LnBa ₂ Cu ₂ MO _{<i>y</i>} (Ln=La, Pr and M=Ta, Nb). Journal of the Ceramic Society of Japan, 1989, 97, 1065-1070.	1.3	13