Romain Capoulade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5857485/publications.pdf

Version: 2024-02-01

94 papers

4,230 citations

32 h-index 63 g-index

104 all docs

104 docs citations

104 times ranked 3966 citing authors

#	Article	IF	CITATIONS
1	Sex-Specific Cell Types and Molecular Pathways Indicate Fibro-Calcific Aortic Valve Stenosis. Frontiers in Immunology, 2022, 13, 747714.	2.2	3
2	The role of antibody responses against glycans in bioprosthetic heart valve calcification and deterioration. Nature Medicine, 2022, 28, 283-294.	15.2	40
3	Sex Differences in the Progression of Aortic Valve Calcification and Clinical Outcomes - The PROGRESSA Study. JACC: Cardiovascular Imaging, 2022, , .	2.3	1
4	Heritability of aortic valve stenosis and bicuspid enrichment in families with aortic valve stenosis. International Journal of Cardiology, 2022, 359, 91-98.	0.8	2
5	Predicting outcomes in patients with aortic stenosis using machine learning: the Aortic Stenosis Risk (ASteRisk) score. Open Heart, 2022, 9, e001990.	0.9	7
6	Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail?. Journal of Clinical Medicine, 2022, 11, 3331.	1.0	2
7	Determinants of Aortic Stenosis Progression in Bicuspid and Tricuspid Aortic Valves., 2022,,.		O
8	Editorial commentary: Lp(a) and calcific aortic valve stenosis: Direct LPA targeting or PCSK9-Lowering therapy?. Trends in Cardiovascular Medicine, 2021, 31, 312-314.	2.3	1
9	Effect of Regional Upper Septal Hypertrophy on Echocardiographic Assessment of Left Ventricular Mass and Remodeling in Aortic Stenosis. Journal of the American Society of Echocardiography, 2021, 34, 62-71.	1,2	4
10	A Comparative Analysis of the Lipoprotein(a) and Low-Density Lipoprotein Proteomic Profiles Combining Mass Spectrometry and Mendelian Randomization. CJC Open, 2021, 3, 450-459.	0.7	11
11	Replacement Myocardial Fibrosis in Patients With Mitral Valve Prolapse. Circulation, 2021, 143, 1763-1774.	1.6	81
12	Left ventricular asymmetric remodeling and subclinical left ventricular dysfunction in patients with calcific aortic valve stenosis $\hat{a} \in \text{``Results from a subanalysis of the PROGRESSA study. International Journal of Cardiology, 2021, 332, 148-156.}$	0.8	1
13	TIMING AND DETERMINANTS OF THE DETERIORATION OF FUNCTIONAL STATUS IN PATIENTS WITH AORTIC STENOSIS. Canadian Journal of Cardiology, 2021, 37, S85.	0.8	O
14	Sex-Related Differences in the Extent of Myocardial Fibrosis in Patients With Aortic Valve Stenosis. JACC: Cardiovascular Imaging, 2020, 13, 699-711.	2.3	67
15	Effect of bicuspid aortic valve phenotype on progression of aortic stenosis. European Heart Journal Cardiovascular Imaging, 2020, 21, 727-734.	0.5	32
16	Estimation of Stroke Volume and Aortic Valve Area in Patients with Aortic Stenosis: A Comparison of Echocardiography versus Cardiovascular Magnetic Resonance. Journal of the American Society of Echocardiography, 2020, 33, 953-963.e5.	1.2	23
17	Durability of transcatheter aortic valve implantation: A translational review. Archives of Cardiovascular Diseases, 2020, 113, 209-221.	0.7	10
18	Genetic and InÂVitro Inhibition of PCSK9 and Calcific Aortic Valve Stenosis. JACC Basic To Translational Science, 2020, 5, 649-661.	1.9	45

#	Article	IF	CITATIONS
19	Lipoprotein-associated phospholipase A2 activity, genetics and calcific aortic valve stenosis in humans. Heart, 2020, 106, 1407-1412.	1.2	12
20	ApoCIII-Lp(a) complexes in conjunction with Lp(a)-OxPL predict rapid progression of aortic stenosis. Heart, 2020, 106, 738-745.	1.2	28
21	Bone Mineral Density and Progression Rate of Calcific Aortic ValveÂStenosis. Journal of the American College of Cardiology, 2020, 75, 1725-1726.	1.2	5
22	Transvalvular Flow Rate Determines Prognostic Value of Aortic Valve Area in Aortic Stenosis. Journal of the American College of Cardiology, 2020, 75, 1758-1769.	1.2	60
23	Mitral Valve Disease. , 2019, , 279-293.e1.		0
24	The effects of cardiac resynchronization therapy on left ventricular and mitral valve geometry and secondary mitral regurgitation in patients with left bundle branch block. Echocardiography, 2019, 36, 1450-1458.	0.3	4
25	Staging Cardiac Damage in Patients With Asymptomatic Aortic Valve Stenosis. Journal of the American College of Cardiology, 2019, 74, 550-563.	1.2	152
26	Critical Structural Defects Explain Filamin A Mutations Causing Mitral Valve Dysplasia. Biophysical Journal, 2019, 117, 1467-1475.	0.2	2
27	Automatic Registration of Correlative Microscopies with Error Assessment and Applications for the Optimization of Multimodal Acquisitions Microscopy and Microanalysis, 2019, 25, 1020-1021.	0.2	0
28	Genetic Association Analyses Highlight <i>IL6</i> , <i>ALPL</i> , and <i>NAV1</i> As 3 New Susceptibility Genes Underlying Calcific Aortic Valve Stenosis. Circulation Genomic and Precision Medicine, 2019, 12, e002617.	1.6	45
29	Variation In Lpa And Calcific Aortic Valve Stenosis In Patients Undergoing Cardiac Surgery And Familial Risk Of Aortic Valve Microcalcification. Atherosclerosis, 2019, 287, e16-e17.	0.4	0
30	Genetic Variation in <i>LPA</i> , Calcific Aortic Valve Stenosis in Patients Undergoing Cardiac Surgery, and Familial Risk of Aortic Valve Microcalcification. JAMA Cardiology, 2019, 4, 620.	3.0	32
31	Oral Anticoagulation Therapy and Progression of Calcific Aortic Valve Stenosis. Journal of the American College of Cardiology, 2019, 73, 1869-1871.	1.2	21
32	Non-syndromic Mitral Valve Dysplasia Mutation Changes the Force Resilience and Interaction of Human Filamin A. Structure, 2019, 27, 102-112.e4.	1.6	12
33	Familial bicuspid aortic valve disease: should we look more closely at the valve?. Heart, 2019, 105, 584-586.	1.2	5
34	A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis. Nature Communications, 2018, 9, 988.	5.8	93
35	Relationship Between Proximal Aorta Morphology and Progression Rate of Aortic Stenosis. Journal of the American Society of Echocardiography, 2018, 31, 561-569.e1.	1.2	7
36	ApoB/ApoA″ Ratio is Associated With Faster Hemodynamic Progression of Aortic Stenosis: Results From the PROGRESSA (Metabolic Determinants of the Progression of Aortic Stenosis) Study. Journal of the American Heart Association, 2018, 7, .	1.6	10

3

#	Article	IF	CITATIONS
37	New insights into mitral valve dystrophy: a Filamin-A genotype–phenotype and outcome study. European Heart Journal, 2018, 39, 1269-1277.	1.0	44
38	B-Type Natriuretic Peptide and High-Sensitivity Cardiac Troponin for RiskÂStratification in Low-Flow, Low-Gradient Aortic Stenosis. JACC: Cardiovascular Imaging, 2018, 11, 939-947.	2.3	28
39	Effects of cardiac resynchronization therapy after inferior myocardial infarction on secondary mitral regurgitation and mitral valve geometry. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 114-121.	0.5	2
40	Deleterious variants in <i><scp>DCHS</scp>1</i> are prevalent in sporadic cases of mitral valve prolapse. Molecular Genetics & DCHS1	0.6	9
41	Mitral Valve and Subvalvular Repair for Secondary Mitral Regurgitation. Cardiology in Review, 2018, 26, 22-28.	0.6	12
42	Association of Mild to Moderate Aortic Valve Stenosis Progression With Higher Lipoprotein(a) and Oxidized Phospholipid Levels. JAMA Cardiology, 2018, 3, 1212.	3.0	76
43	PCSK9 Involvement in Aortic Valve Calcification. Journal of the American College of Cardiology, 2018, 72, 3225-3227.	1.2	34
44	Prevalence of left ventricle non-compaction criteria in adult patients with bicuspid aortic valve versus healthy control subjects. Open Heart, 2018, 5, e000869.	0.9	5
45	Outcomes of Patients With Asymptomatic Aortic Stenosis Followed Up in Heart Valve Clinics. JAMA Cardiology, 2018, 3, 1060.	3.0	177
46	Progression of Hypertrophy and Myocardial Fibrosis in Aortic Stenosis. Circulation: Cardiovascular Imaging, 2018, 11, e007451.	1.3	139
47	Systolic hypertension and progression of aortic valve calcification in patients with aortic stenosis: results from the PROGRESSA study. European Heart Journal Cardiovascular Imaging, 2017, 18, 70-78.	0.5	63
48	Effect of age and aortic valve anatomy on calcification and haemodynamic severity of aortic stenosis. Heart, 2017, 103, 32-39.	1.2	46
49	Impact of left ventricular remodelling patterns on outcomes in patients with aortic stenosis. European Heart Journal Cardiovascular Imaging, 2017, 18, 1378-1387.	0.5	56
50	Surgical Versus Medical Therapy for Prosthetic Valve Endocarditis: AÂMeta-Analysis of 32 Studies. Annals of Thoracic Surgery, 2017, 103, 991-1004.	0.7	24
51	Impact of Aortic Valve Calcification and Sex onÂHemodynamic Progression and Clinical Outcomes in AS. Journal of the American College of Cardiology, 2017, 69, 2096-2098.	1.2	42
52	Response by Capoulade et al to Letter Regarding Article, "Impact of Left Ventricular to Mitral Valve Ring Mismatch on Recurrent Ischemic Mitral Regurgitation After Ring Annuloplasty― Circulation, 2017, 135, e785-e786.	1.6	0
53	IMPACT OF AORTIC VALVE CALCIFICATION AND SEX ON HEMODYNAMIC PROGRESSION AND CLINICAL OUTCOMES IN AORTIC STENOSIS. Journal of the American College of Cardiology, 2017, 69, 1929.	1.2	0
54	RELATIONSHIP BETWEEN PROXIMAL AORTA MORPHOLOGY AND PROGRESSION RATE OF AORTIC STENOSIS. Journal of the American College of Cardiology, 2017, 69, 1930.	1.2	0

#	Article	IF	CITATIONS
55	Autoantibodies and immune complexes to oxidation-specific epitopes and progression of aortic stenosis: Results from the ASTRONOMER trial. Atherosclerosis, 2017, 260, 1-7.	0.4	6
56	Impact of cardiac resynchronization therapy on mitral valve apparatus geometry and clinical outcomes in patients with secondary mitral regurgitation. Echocardiography, 2017, 34, 1561-1567.	0.3	9
57	Impact of AVR on LV Remodeling and Function in Paradoxical Low-Flow, Low-Gradient Aortic Stenosis With Preserved LVEF. JACC: Cardiovascular Imaging, 2017, 10, 88-89.	2.3	7
58	Multimodality imaging assessment of mitral valve anatomy in planning for mitral valve repair in secondary mitral regurgitation. Journal of Thoracic Disease, 2017, 9, S640-S660.	0.6	15
59	Mitral valve repair and subvalvular intervention for secondary mitral regurgitation: a systematic review and meta-analysis of randomized controlled and propensity matched studies. Journal of Thoracic Disease, 2017, 9, S582-S594.	0.6	29
60	Echocardiographic predictors of outcomes in adults with aortic stenosis. Heart, 2016, 102, 934-942.	1.2	74
61	Discordant Grading of AorticÂStenosisÂSeverity. JACC: Cardiovascular Imaging, 2016, 9, 797-805.	2.3	69
62	RELATIONSHIP BETWEEN AORTIC VALVE CALCIFICATION AND HEMODYNAMIC PROGRESSION OF AORTIC STENOSIS: RESULTS FROM AN INTERNATIONAL REGISTRY STUDY. Canadian Journal of Cardiology, 2016, 32, S250-S251.	0.8	0
63	Impact of Left Ventricular to Mitral Valve Ring Mismatch on Recurrent Ischemic Mitral Regurgitation After Ring Annuloplasty. Circulation, 2016, 134, 1247-1256.	1.6	58
64	Combined papillary muscle sling and ring annuloplasty for moderate-to-severe secondary mitral regurgitation. Journal of Cardiac Surgery, 2016, 31, 664-671.	0.3	27
65	A Systematic Review of Mitral Valve Repair With Autologous Pericardial Leaflet Augmentation for Rheumatic Mitral Regurgitation. Annals of Thoracic Surgery, 2016, 102, 1400-1405.	0.7	30
66	Right ventricular longitudinal strain for risk stratification in low-flow, low-gradient aortic stenosis with low ejection fraction. Heart, 2016, 102, 548-554.	1.2	38
67	Circulating Lp-PLA2 is associated with high valvuloarterial impedance and low arterial compliance in patients with aortic valve bioprostheses. Clinica Chimica Acta, 2016, 455, 20-25.	0.5	3
68	Impact of Classic and Paradoxical Low Flow on Survival After Aortic Valve Replacement for Severe Aortic Stenosis. Journal of the American College of Cardiology, 2015, 65, 645-653.	1.2	83
69	Impact of Plasma Lp-PLA2 Activity onÂtheÂProgression of Aortic Stenosis. JACC: Cardiovascular Imaging, 2015, 8, 26-33.	2.3	51
70	Relationship Between Insulin-Like Growth Factor Binding Protein-2 and Left Ventricular Stroke Volume in Patients With Aortic Stenosis. Canadian Journal of Cardiology, 2015, 31, 1447-1454.	0.8	11
71	Evolution and prognostic impact of low flow after transcatheter aortic valve replacement. Heart, 2015, 101, 1196-1203.	1.2	24
72	Tricuspid Regurgitation Is Associated With Increased Risk of Mortality in Patients With Low-Flow Low-Gradient Aortic Stenosis and Reduced Ejection Fraction. JACC: Cardiovascular Interventions, 2015, 8, 588-596.	1.1	56

#	Article	IF	CITATIONS
73	Therapy for secondary mitral regurgitation: time to â€~cut the chord'?. Heart, 2015, 101, 996-997.	1.2	1
74	Usefulness of Global Left Ventricular Longitudinal Strain for Risk Stratification in Low Ejection Fraction, Low-Gradient Aortic Stenosis. Circulation: Cardiovascular Imaging, 2015, 8, e002117.	1.3	73
75	Assessment of Aortic Valve Disease: Role of Imaging Modalities. Current Treatment Options in Cardiovascular Medicine, 2015, 17, 49.	0.4	8
76	Oxidized Phospholipids, Lipoprotein(a),Âand Progression of CalcificÂAortic ValveÂStenosis. Journal of the American College of Cardiology, 2015, 66, 1236-1246.	1.2	295
77	Myocardial injury following transcatheter aortic valve implantation: insights from delayed-enhancement cardiovascular magnetic resonance. EuroIntervention, 2015, 11, 205-213.	1.4	23
78	Non-Invasive Determination of Left Ventricular Workload in Patients with Aortic Stenosis Using Magnetic Resonance Imaging and Doppler Echocardiography. PLoS ONE, 2014, 9, e86793.	1.1	35
79	Normalized left ventricular workload using phase-contrast magnetic resonance imaging in patients with aortic stenosis., 2014, 2014, 6430-3.		0
80	Prognostic value of plasma B-type natriuretic peptide levels after exercise in patients with severe asymptomatic aortic stenosis. Heart, 2014, 100, 1606-1612.	1.2	36
81	Visceral Adiposity and Left Ventricular Mass and Function in Patients With Aortic Stenosis: The PROGRESSA Study. Canadian Journal of Cardiology, 2014, 30, 1080-1087.	0.8	26
82	Impact of Aortic Valve Calcification, asÂMeasured by MDCT, on Survival inÂPatients WithÂAortic Stenosis. Journal of the American College of Cardiology, 2014, 64, 1202-1213.	1.2	367
83	Circulating Levels of Matrix Gla Protein and Progression of Aortic Stenosis: A Substudy of the Aortic Stenosis Progression Observation: Measuring Effects of RosuvastatinÂ(ASTRONOMER) Trial. Canadian Journal of Cardiology, 2014, 30, 1088-1095.	0.8	14
84	The Complex Nature of Discordant Severe Calcified Aortic Valve Disease Grading. Journal of the American College of Cardiology, 2013, 62, 2329-2338.	1.2	436
85	Impact of hypertension and renin–angiotensin system inhibitors in aortic stenosis. European Journal of Clinical Investigation, 2013, 43, 1262-1272.	1.7	75
86	Stress Echocardiography to Assess Stenosis Severity and Predict Outcome in Patients With Paradoxical Low-Flow, Low-Gradient Aortic Stenosis and Preserved LVEF. JACC: Cardiovascular Imaging, 2013, 6, 175-183.	2.3	173
87	Discrepancies between cardiovascular magnetic resonance and Doppler echocardiography in the measurement of transvalvular gradient in aortic stenosis: the effect of flow vorticity. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 84.	1.6	33
88	Reply. Journal of the American College of Cardiology, 2013, 61, 1833-1834.	1.2	0
89	Insulin Resistance and LVH Progression in Patients With Calcific Aortic Stenosis. JACC: Cardiovascular Imaging, 2013, 6, 165-174.	2.3	31
90	Aortic Valve Calcification Measured by Computed Tomography Predicts Outcome in Aortic Stenosis. Canadian Journal of Cardiology, 2013, 29, S352-S353.	0.8	0

#	Article	IF	CITATIONS
91	Impact of global hemodynamic load on exercise capacity in aortic stenosis. International Journal of Cardiology, 2013, 168, 2272-2277.	0.8	25
92	Usefulness of cardiovascular magnetic resonance imaging for the evaluation of valve opening and closing kinetics in aortic stenosis. European Heart Journal Cardiovascular Imaging, 2013, 14, 819-826.	0.5	10
93	Outcome of Patients With Aortic Stenosis, Small Valve Area, and Low-Flow, Low-Gradient Despite Preserved Left Ventricular Ejection Fraction. Journal of the American College of Cardiology, 2012, 60, 1259-1267.	1.2	295
94	Impact of Metabolic Syndrome on Progression of Aortic Stenosis. Journal of the American College of Cardiology, 2012, 60, 216-223.	1.2	103