Liang Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5855734/publications.pdf Version: 2024-02-01

LIANC FANC

#	Article	IF	CITATIONS
1	Light activated shape memory polymers and composites: A review. European Polymer Journal, 2020, 136, 109912.	5.4	89
2	Shape-memory polymer composites selectively triggered by near-infrared light of two certain wavelengths and their applications at macro-/microscale. Composites Science and Technology, 2017, 138, 106-116.	7.8	67
3	Near-Infrared Light and Solar Light Activated Self-Healing Epoxy Coating having Enhanced Properties Using MXene Flakes as Multifunctional Fillers. Polymers, 2018, 10, 474.	4.5	59
4	CdS/Pt photocatalytic activity boosted by high-energetic photons based on efficient triplet–triplet annihilation upconversion. Applied Catalysis B: Environmental, 2017, 217, 100-107.	20.2	53
5	Highly efficient photocatalytic hydrogen generation of g-C3N4-CdS sheets based on plasmon-enhanced triplet–triplet annihilation upconversion. Applied Catalysis B: Environmental, 2019, 258, 117762.	20.2	50
6	Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light. Progress in Organic Coatings, 2016, 101, 543-552.	3.9	47
7	Selfâ€Healing Epoxy Coatings via Focused Sunlight Based on Photothermal Effect. Macromolecular Materials and Engineering, 2017, 302, 1700059.	3.6	34
8	Preparation and assembly of five photoresponsive polymers to achieve complex light-induced shape deformations. Materials and Design, 2018, 144, 129-139.	7.0	32
9	Thermally-Induced Self-Healing Behaviors and Properties of Four Epoxy Coatings with Different Network Architectures. Polymers, 2017, 9, 333.	4.5	29
10	Crystallinity and β Phase Fraction of PVDF in Biaxially Stretched PVDF/PMMA Films. Polymers, 2021, 13, 998.	4.5	27
11	Nearâ€Infrared Light Triggered Soft Actuators in Aqueous Media Prepared from Shapeâ€Memory Polymer Composites. Macromolecular Materials and Engineering, 2016, 301, 1111-1120.	3.6	26
12	Self-healing polymer coatings of polyurea-urethane/epoxy blends with reversible and dynamic bonds. Progress in Organic Coatings, 2020, 147, 105876.	3.9	25
13	Light-induced rare earth organic complex/shape-memory polymer composites with high strength and luminescence based on hydrogen bonding. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105525.	7.6	24
14	Silane modified epoxy coatings with low surface tension to achieve self-healing of wide damages. Progress in Organic Coatings, 2019, 133, 357-367.	3.9	24
15	NIRâ€ŀâ€Responsive Singleâ€Band Upconversion Emission through Energy Migration in Core–Shell–Shell Nanostructures. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
16	Efficient Photocatalysis of Composite Films Based on Plasmon-Enhanced Triplet–Triplet Annihilation. ACS Applied Materials & Interfaces, 2020, 12, 717-726.	8.0	19
17	Wide-temperature range damping polyurea-urethane blends with self-healing capability. Construction and Building Materials, 2020, 262, 119991.	7.2	19
18	Two-Level Shape Changes of Polymeric Microcuboids Prepared from Crystallizable Copolymer Networks. Macromolecules, 2017, 50, 2518-2527.	4.8	18

Liang Fang

#	Article	lF	CITATIONS
19	Build a bridge from polymeric structure design to engineering application of self-healing coatings: A review. Progress in Organic Coatings, 2022, 167, 106790.	3.9	15
20	Remote actuation of light activated shape memory polymers via D-shaped optical fibres. Smart Materials and Structures, 2020, 29, 047001.	3.5	14
21	Luminescent and hydrophobic textile coatings with recyclability and self-healing capability against both chemical and physical damage. Cellulose, 2020, 27, 561-573.	4.9	13
22	Solar Light Responsive Polymer Composites with Three Shapeâ€Memory Effects. Macromolecular Materials and Engineering, 2016, 301, 267-273.	3.6	12
23	Implementing and Quantifying the Shapeâ€Memory Effect of Single Polymeric Micro/Nanowires with an Atomic Force Microscope. ChemPhysChem, 2018, 19, 2078-2084.	2.1	12
24	Nearâ€Infrared Light–Induced Sequential Shape Recovery and Separation of Assembled Temperature Memory Polymer Microparticles. Macromolecular Rapid Communications, 2020, 41, e2000043.	3.9	12
25	Supramolecular hydrogel hybrids having high mechanical property, photoluminescence and light-induced shape deformation capability: Design, preparation and characterization. Materials and Design, 2018, 160, 194-202.	7.0	11
26	Shapeâ€Memory Capability of Copolyetheresterurethane Microparticles Prepared via Electrospraying. Macromolecular Materials and Engineering, 2015, 300, 522-530.	3.6	10
27	Near-Infrared Upconversion Transparent Inorganic Nanofilm: Confined-Space Directed Oriented Crystal Growth and Distinctive Ultraviolet Emission. Crystal Growth and Design, 2016, 16, 5787-5797.	3.0	10
28	Facile Repair of Antiâ€Corrosion Polymeric Composite Coatings Based on Light Triggered Selfâ€Healing. Macromolecular Materials and Engineering, 2021, 306, 2100106.	3.6	10
29	Chameleon inspired layer-by-layer assembly of thermochromic microcapsules to achieve controllable multiple-color change. Smart Materials and Structures, 2020, 29, 04LT02.	3.5	10
30	Enhanced triplet–triplet annihilation upconversion by photonic crystals and Au plasma resonance for efficient photocatalysis. Catalysis Science and Technology, 2020, 10, 8325-8331.	4.1	9
31	Effects of Blended Reversible Epoxy Domains on Structures and Properties of Selfâ€Healing/Shapeâ€Memory Thermoplastic Polyurethane. Macromolecular Materials and Engineering, 2020, 305, 1900578.	3.6	8
32	Functionalization of PVDF-based copolymer via photo-induced p-anisaldehyde catalyzed atom transfer radical polymerization. Reactive and Functional Polymers, 2020, 150, 104541.	4.1	8
33	Improved upconversion efficiency and thermal stability of NaYF4@SiO2 photonic crystal film. Journal of Alloys and Compounds, 2018, 741, 337-347.	5.5	7
34	Enhancement of fluorescent emission in photonic crystal film and application in photocatalysis. Nanotechnology, 2018, 29, 045601.	2.6	6
35	Temperature-induced evolution of microstructures on poly[ethylene-co-(vinyl acetate)] substrates switches their underwater wettability. Materials and Design, 2019, 163, 107530.	7.0	6
36	Surface Structures, Particles, and Fibers of Shape-Memory Polymers at Micro-/Nanoscale. Advances in Polymer Technology, 2020, 2020, 1-16.	1.7	6

Liang Fang

#	Article	IF	CITATIONS
37	Photoresponsive hydrogels with high wavelength selectivity for near-infrared light. Materials Letters, 2018, 219, 163-165.	2.6	5
38	Manufacture of luminescent shapeâ€memory polymer composites using rare earth organic complex and commercial carboxylated nitrile rubber. Polymer Composites, 2020, 41, 3732-3747.	4.6	5
39	Effects of Blended Reversible Epoxy Domains on Structures and Properties of Selfâ€Healing/Shapeâ€Memory Thermoplastic Polyurethane. Macromolecular Materials and Engineering, 2020, 305, 2070003.	3.6	5
40	Synthesis and Study of Shape-Memory Polymers Selectively Induced by Near-Infrared Lights via In Situ Copolymerization. Polymers, 2017, 9, 181.	4.5	4
41	Directed flow and assembly of magnetic polymer nanocomposites switchable between steady and non-steady status driven by magnetic field. Smart Materials and Structures, 2020, 29, 035030.	3.5	2
42	Dual-layered up-conversion films with tunable multi-peaks spectrum for efficient photocatalytic degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 417, 113360.	3.9	2
43	Uniform Contraction and High Force Output of Photoresponsive Shapeâ€Memory Polymer Actuators with Large Thickness Based on Vertical Distribution of Rare Earth Oxides. Macromolecular Materials and Engineering, 0, , 2100683.	3.6	2
44	Tripletâ€Triplet Annihilation Upâ€Conversion Luminescent Assisted Freeâ€Radical Reactions of Polymers Using Visible Light. Macromolecular Chemistry and Physics, 2022, 223, .	2.2	2
45	Crystal growth and fluorescence of downconversion films in confined space with ingoing channels. Optical Materials, 2022, 128, 112391.	3.6	2
46	Uniform upconversion film with large area prepared by improved confined-space synthesis method. Optical Materials, 2020, 99, 109509.	3.6	1
47	Down-Conversion Polymer Composite Coatings with Multipeak Absorption and Emission. Coatings, 2021, 11, 282.	2.6	1
48	Effects of Ligands in Rare Earth Complex on Properties, Functions, and Intelligent Behaviors of Polyurea–Urethane Composites. Polymers, 2022, 14, 2098.	4.5	1
49	Precise prediction of photothermally induced irreversible bending deformation based on non-uniform thermal expansion of layer-structure films. Smart Materials and Structures, 2022, 31, 095041.	3.5	1
50	Enhancement of fluorescent properties of photonic crystals containing triplet–triplet annihilation upconversion materials via adjusting incident angles. Journal of Materials Science: Materials in Electronics, 2018, 29, 1680-1689.	2.2	0
51	Large-scale photonic crystal films prepared via coating-assisted leveling and gravity-induced assembly. Optical Materials, 2022, 131, 112665.	3.6	0