Kai Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5855604/publications.pdf Version: 2024-02-01

394421 501196 4,587 26 19 28 citations h-index g-index papers 32 32 32 7392 docs citations times ranked citing authors all docs

KALCHENC

#	Article	IF	CITATIONS
1	A small-molecule dye for NIR-II imaging. Nature Materials, 2016, 15, 235-242.	27.5	1,314
2	Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chemical Society Reviews, 2009, 38, 2532.	38.1	1,073
3	A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nature Communications, 2017, 8, 15269.	12.8	458
4	Porous Hollow Fe ₃ O ₄ Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin. Journal of the American Chemical Society, 2009, 131, 10637-10644.	13.7	429
5	Biological imaging without autofluorescence in the second near-infrared region. Nano Research, 2015, 8, 3027-3034.	10.4	263
6	Construction and Validation of Nano Gold Tripods for Molecular Imaging of Living Subjects. Journal of the American Chemical Society, 2014, 136, 3560-3571.	13.7	170
7	Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe. ACS Nano, 2017, 11, 12276-12291.	14.6	137
8	Affibody modified and radiolabeled gold–Iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials, 2013, 34, 2796-2806.	11.4	129
9	Hybrid Nanotrimers for Dual T1 and T2-Weighted Magnetic Resonance Imaging. ACS Nano, 2014, 8, 9884-9896.	14.6	106
10	Synergistically Enhancing the Therapeutic Effect of Radiation Therapy with Radiation Activatable and Reactive Oxygen Species-Releasing Nanostructures. ACS Nano, 2018, 12, 4946-4958.	14.6	101
11	Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning. International Journal of Radiation Oncology Biology Physics, 2019, 105, 432-439.	0.8	49
12	⁶⁴ Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques. Journal of Nuclear Medicine, 2015, 56, 939-944.	5.0	36
13	Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes. Biomaterials, 2014, 35, 7511-7521.	11.4	33
14	Chelator-Free and Biocompatible Melanin Nanoplatform with Facile-Loading Gadolinium and Copper-64 for Bioimaging. Bioconjugate Chemistry, 2017, 28, 1925-1930.	3.6	32
15	A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications. Applied Physics Letters, 2012, 100, .	3.3	29
16	Recyclable Cu(<scp>i</scp>)/melanin dots for cycloaddition, bioconjugation and cell labelling. Chemical Science, 2016, 7, 5888-5892.	7.4	27
17	Robust surface coating for a fast, facile fluorine-18 labeling of iron oxide nanoparticles for PET/MR dual-modality imaging. Nanoscale, 2016, 8, 19644-19653.	5.6	20
18	Target‑specific delivery of oxaliplatin to HER2‑positive gastric cancer cells inÃ⁻Âį¼2vivo using oxaliplatin‑au‑fe3o4‑herceptin nanoparticles. Oncology Letters, 2018, 15, 8079-8087.	1.8	20

Kai Cheng

#	Article	IF	CITATIONS
19	Controlled Nano–Bio Interface of Functional Nanoprobes for in Vivo Monitoring Enzyme Activity in Tumors. ACS Nano, 2019, 13, 1153-1167.	14.6	16
20	Fluorescent magnetic nanoparticles based on a ruthenium complex and Fe ₃ O ₄ . Journal of Materials Chemistry, 2011, 21, 11464-11467.	6.7	14
21	Evaluation of a smart activatable MRI nanoprobe to target matrix metalloproteinases in the early-stages of abdominal aortic aneurysms. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 26, 102177.	3.3	11
22	lsothiocyanate-Functionalized Bifunctional Chelates and <i>fac</i> -[M ^I (CO) ₃] ⁺ (M = Re, ^{99m} Tc) Complexes for Targeting uPAR in Prostate Cancer. Bioconjugate Chemistry, 2016, 27, 130-142.	3.6	8
23	Flexible radioluminescence imaging for FDGâ€guided surgery. Medical Physics, 2016, 43, 5298-5306.	3.0	7
24	Reduced acquisition time for Lâ€shell xâ€ray fluorescence computed tomography using polycapillary xâ€ray optics. Medical Physics, 2019, 46, 5696-5702.	3.0	7
25	Highâ€speed Xâ€rayâ€induced luminescence computed tomography. Journal of Biophotonics, 2020, 13, e202000066.	2.3	4
26	Inside Back Cover: Inâ€Vitro and Inâ€Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles (Angew. Chem. Int. Ed. 13/2012). Angewandte Chemie - International Edition, 2012, 51, 3275-3275.	13.8	1