
Thomas Clavel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5855477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differences in Fecal Microbiota in Different European Study Populations in Relation to Age, Gender, and Country: a Cross-Sectional Study. Applied and Environmental Microbiology, 2006, 72, 1027-1033.	3.1	844
2	High-fat diet alters gut microbiota physiology in mice. ISME Journal, 2014, 8, 295-308.	9.8	583
3	Metabolic Activation of Intrahepatic CD8+ T Cells and NKT Cells Causes Nonalcoholic Steatohepatitis and Liver Cancer via Cross-Talk with Hepatocytes. Cancer Cell, 2014, 26, 549-564.	16.8	531
4	Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome, 2019, 7, 28.	11.1	481
5	The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nature Microbiology, 2016, 1, 16131.	13.3	465
6	IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Scientific Reports, 2016, 6, 33721.	3.3	330
7	Metabolic Diversity of the Intestinal Microbiota: Implications for Health and Disease1,. Journal of Nutrition, 2007, 137, 751S-755S.	2.9	329
8	Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ, 2017, 5, e2836.	2.0	325
9	Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence. Gut, 2016, 65, 225-237.	12.1	317
10	Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nature Microbiology, 2017, 2, 16215.	13.3	313
11	A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nature Communications, 2020, 11, 6389.	12.8	269
12	Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis. Gut, 2011, 60, 325-333.	12.1	251
13	Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut, 2017, 66, 863-871.	12.1	237
14	Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Communications, 2021, 1, .	4.2	228
15	The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nature Communications, 2018, 9, 3760.	12.8	200
16	Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. International Journal of Medical Microbiology, 2016, 306, 343-355.	3.6	196
17	Intestinal Bacterial Communities That Produce Active Estrogen-Like Compounds Enterodiol and Enterolactone in Humans. Applied and Environmental Microbiology, 2005, 71, 6077-6085.	3.1	181
18	Intestinal microbiota in metabolic diseases. Gut Microbes, 2014, 5, 544-551.	9.8	170

#	Article	IF	CITATIONS
19	Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Molecular Metabolism, 2016, 5, 1162-1174.	6.5	170
20	The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome, 2018, 6, 134.	11.1	169
21	Performing Skin Microbiome Research: A Method to the Madness. Journal of Investigative Dermatology, 2017, 137, 561-568.	0.7	164
22	The gut bacterium <i>Extibacter muris</i> produces secondary bile acids and influences liver physiology in gnotobiotic mice. Gut Microbes, 2021, 13, 1-21.	9.8	161
23	Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes. Cell Host and Microbe, 2020, 28, 258-272.e6.	11.0	160
24	Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiology Ecology, 2006, 55, 471-478.	2.7	156
25	Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe, 2006, 12, 140-147.	2.1	143
26	Isoflavones and Functional Foods Alter the Dominant Intestinal Microbiota in Postmenopausal Women. Journal of Nutrition, 2005, 135, 2786-2792.	2.9	129
27	Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. American Journal of Clinical Nutrition, 2017, 106, 1274-1286.	4.7	124
28	Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Systematic and Applied Microbiology, 2007, 30, 16-26.	2.8	122
29	Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Scientific Reports, 2017, 7, 11955.	3.3	119
30	Conversion of Daidzein and Genistein by an Anaerobic Bacterium Newly Isolated from the Mouse Intestine. Applied and Environmental Microbiology, 2008, 74, 4847-4852.	3.1	110
31	Bioavailability of lignans in human subjects. Nutrition Research Reviews, 2006, 19, 187-196.	4.1	108
32	The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Scientific Reports, 2015, 5, 13212.	3.3	105
33	Comparative genomics and physiology of the butyrateâ€producing bacterium <i>Intestinimonas butyriciproducens</i> . Environmental Microbiology Reports, 2016, 8, 1024-1037.	2.4	104
34	Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Molecular Metabolism, 2019, 22, 96-109.	6.5	102
35	Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunological Reviews, 2017, 279, 8-22.	6.0	101
36	Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1805-1812.	1.7	97

#	Article	IF	CITATIONS
37	Intestinimonas butyriciproducens gen. nov., sp. nov., a butyrate-producing bacterium from the mouse intestine. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4606-4612.	1.7	95
38	Gut metabolites and bacterial community networks during a pilot intervention study with flaxseeds in healthy adult men. Molecular Nutrition and Food Research, 2015, 59, 1614-1628.	3.3	95
39	Bacteria- and host-derived mechanisms to control intestinal epithelial cell homeostasis: Implications for chronic inflammation. Inflammatory Bowel Diseases, 2007, 13, 1153-1164.	1.9	91
40	Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis. Gastroenterology, 2018, 155, 1539-1552.e12.	1.3	85
41	An Integrated Metagenome Catalog Reveals New Insights into the Murine Gut Microbiome. Cell Reports, 2020, 30, 2909-2922.e6.	6.4	85
42	Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Analytical and Bioanalytical Chemistry, 2017, 409, 1231-1245.	3.7	81
43	Cultured microbes represent a substantial fraction of the human and mouse gut microbiota. Gut Microbes, 2017, 8, 493-503.	9.8	79
44	Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. Archives of Microbiology, 2012, 194, 901-907.	2.2	76
45	Lignan transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast cancer. Carcinogenesis, 2012, 33, 203-208.	2.8	74
46	Post-Translational Inhibition of IP-10 Secretion in IEC by Probiotic Bacteria: Impact on Chronic Inflammation. PLoS ONE, 2009, 4, e4365.	2.5	71
47	The mouse gut microbiome revisited: From complex diversity to model ecosystems. International Journal of Medical Microbiology, 2016, 306, 316-327.	3.6	70
48	Bacterial transformation of dietary lignans in gnotobiotic rats. FEMS Microbiology Ecology, 2010, 72, 507-514.	2.7	68
49	Gut matters: Microbe-host interactions in allergic diseases. Journal of Allergy and Clinical Immunology, 2012, 129, 1452-1459.	2.9	68
50	Dual Role of the Adaptive Immune System in Liver Injury and Hepatocellular Carcinoma Development. Cancer Cell, 2016, 30, 308-323.	16.8	68
51	Early-Life Immune System Maturation in Chickens Using a Synthetic Community of Cultured Gut Bacteria. MSystems, 2021, 6, .	3.8	68
52	Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1527-1531.	1.7	66
53	Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling. ISME Communications, 2021, 1, .	4.2	60
54	Exclusive enteral nutrition in active pediatric Crohn disease: Effects on intestinal microbiota and immune regulation. Journal of Allergy and Clinical Immunology, 2016, 138, 592-596.	2.9	54

#	Article	IF	CITATIONS
55	High microbiota reactivity of adult human intestinal IgA requires somatic mutations. Journal of Experimental Medicine, 2020, 217, .	8.5	53
56	Gut barrier impairment by highâ€fat diet in mice depends on housing conditions. Molecular Nutrition and Food Research, 2016, 60, 897-908.	3.3	49
57	Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome, 2021, 9, 61.	11.1	47
58	Discordance between changes in the gut microbiota and pathogenicity in a mouse model of spontaneous colitis. Gut Microbes, 2014, 5, 286-485.	9.8	44
59	An Open-Labeled Study on Fecal Microbiota Transfer in Irritable Bowel Syndrome Patients Reveals Improvement in Abdominal Pain Associated with the Relative Abundance of Akkermansia Muciniphila. Digestion, 2019, 100, 127-138.	2.3	44
60	Determinants of postprandial plasma bile acid kinetics in human volunteers. American Journal of Physiology - Renal Physiology, 2017, 313, G300-G312.	3.4	38
61	A proposed update for the classification and description of bacterial lipolytic enzymes. PeerJ, 2019, 7, e7249.	2.0	38
62	Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Review of Molecular Diagnostics, 2016, 16, 795-805.	3.1	33
63	Parvibacter caecicola gen. nov., sp. nov., a bacterium of the family Coriobacteriaceae isolated from the caecum of a mouse. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2642-2648.	1.7	32
64	The Family Coriobacteriaceae. , 2014, , 201-238.		31
65	Molecular interactions between bacteria, the epithelium, and the mucosal immune system in the intestinal tract: implications for chronic inflammation. Current Issues in Intestinal Microbiology, 2007, 8, 25-43.	2.5	29
66	Isolation of bacteria from mouse caecal samples and description of Bacteroides sartorii sp. nov. Archives of Microbiology, 2010, 192, 427-435.	2.2	25
67	Murimonas intestini gen. nov., sp. nov., an acetate-producing bacterium of the family Lachnospiraceae isolated from the mouse gut. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 870-878.	1.7	25
68	From complex gut communities to minimal microbiomes via cultivation. Current Opinion in Microbiology, 2017, 38, 148-155.	5.1	23
69	Increased Pancreatic Protease Activity in Response to Antibiotics Impairs Gut Barrier and Triggers Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 370-388.e3.	4.5	22
70	Nlrp3-dependent IL- $1\hat{l}^2$ inhibits CD103+ dendritic cell differentiation in the gut. JCI Insight, 2018, 3, .	5.0	22
71	Gut microbiota and brain alterations in a translational anorexia nervosa rat model. Journal of Psychiatric Research, 2021, 133, 156-165.	3.1	21
72	Streptococcus danieliae sp. nov., a novel bacterium isolated from the caecum of a mouse. Archives of Microbiology, 2013, 195, 43-49.	2.2	20

#	Article	IF	CITATIONS
73	Phenolics in Human Nutrition: Importance of the Intestinal Microbiome for Isoflavone and Lignan Bioavailability. , 2013, , 2433-2463.		20
74	Catechols in caffeic acid phenethyl ester are essential for inhibition of TNFâ€mediated IPâ€10 expression through NFâ€I°Bâ€dependent but HOâ€1†and p38â€independent mechanisms in mouse intestinal epithelial Molecular Nutrition and Food Research, 2011, 55, 1850-1861.	cell s. 3	19
75	Mining gut microbiome oligopeptides by functional metaproteome display. Scientific Reports, 2016, 6, 34337.	3.3	19
76	Species-targeted sorting and cultivation of commensal bacteria from the gut microbiome using flow cytometry under anaerobic conditions. Microbiome, 2022, 10, 24.	11.1	18
77	Complementary Use of Cultivation and High-Throughput Amplicon Sequencing Reveals High Biodiversity Within Raw Milk Microbiota. Frontiers in Microbiology, 2020, 11, 1557.	3.5	16
78	Recent advances in culture-based gut microbiome research. International Journal of Medical Microbiology, 2021, 311, 151485.	3.6	15
79	Sporofaciens musculi gen. nov., sp. nov., a novel bacterium isolated from the caecum of an obese mouse. International Journal of Systematic and Evolutionary Microbiology, 2019, 71, .	1.7	15
80	Anaerobic single ell dispensing facilitates the cultivation of human gut bacteria. Environmental Microbiology, 2022, 24, 3861-3881.	3.8	15
81	MiMiC: a bioinformatic approach for generation of synthetic communities from metagenomes. Microbial Biotechnology, 2021, 14, 1757-1770.	4.2	12
82	NLRP6 Inflammasome Modulates Disease Progression in a Chronic-Plus-Binge Mouse Model of Alcoholic Liver Disease. Cells, 2022, 11, 182.	4.1	12
83	Next steps after 15 stimulating years of human gut microbiome research. Microbial Biotechnology, 2022, 15, 164-175.	4.2	11
84	Naturalizing laboratory mice by housing in a farmyard-type habitat confers protection against colorectal carcinogenesis. Gut Microbes, 2021, 13, 1993581.	9.8	11
85	Posttranslational Inhibition of Proinflammatory Chemokine Secretion in Intestinal Epithelial Cells. Journal of Clinical Gastroenterology, 2010, 44, S10-S15.	2.2	10
86	Short-Term Overfeeding with Dairy Cream Does Not Modify Gut Permeability, the Fecal Microbiota, or Glucose Metabolism in Young Healthy Men. Journal of Nutrition, 2018, 148, 77-85.	2.9	10
87	Development of stable isotope dilution assays for the quantitation of intra- and extracellular folate patterns of Bifidobacterium adolescentis. Journal of Chromatography A, 2016, 1469, 48-59.	3.7	8
88	A diet-specific microbiota drives Salmonella Typhimurium to adapt its in vivo response to plant-derived substrates. Animal Microbiome, 2021, 3, 24.	3.8	7
89	The Compromised Mucosal Immune System of β7 Integrin-Deficient Mice Has Only Minor Effects on the Fecal Microbiota in Homeostasis. Frontiers in Microbiology, 2019, 10, 2284.	3.5	6
90	Fetal Exposure to Maternal Inflammation Does Not Affect Postnatal Development of Genetically-Driven Ileitis and Colitis. PLoS ONE, 2014, 9, e98237.	2.5	6

#	Article	IF	CITATIONS
91	Physiological relevance of food grade microcapsules: Impact of milk protein based microcapsules on inflammation in mouse models for inflammatory bowel diseases. Molecular Nutrition and Food Research, 2015, 59, 1629-1634.	3.3	5
92	Measurements of Intra- and Extra-Cellular 5-Methyltetrahydrofolate Indicate that Bifidobacterium Adolescentis DSM 20083T and Bifidobacterium Pseudocatenulatum DSM 20438T Do Not Actively Excrete 5-Methyltetrahydrofolate In vitro. Frontiers in Microbiology, 2017, 8, 445.	3.5	5
93	Ring Trial on Quantitative Assessment of Bile Acids Reveals a Method- and Analyte-Specific Accuracy and Reproducibility. Metabolites, 2022, 12, 583.	2.9	5
94	Allulose in human diet: the knowns and the unknowns. British Journal of Nutrition, 2022, 128, 172-178.	2.3	4
95	Microbiome and Diseases: Metabolic Disorders. , 2018, , 251-277.		3
96	Investigation of Adiposity Measures and Operational Taxonomic unit (OTU) Data Transformation Procedures in Stool Samples from a German Cohort Study Using Machine Learning Algorithms. Microorganisms, 2020, 8, 547.	3.6	1
97	Upregulation of Anti-Oxidative Stress Response Improves Metabolic Changes in L-Selectin-Deficient Mice but Does Not Prevent NAFLD Progression or Fecal Microbiota Shifts. International Journal of Molecular Sciences, 2021, 22, 7314.	4.1	1
98	Microbiote intestinal, lipides alimentaires et maladies métaboliques. Cahiers De Nutrition Et De Dietetique, 2019, 54, 347-353.	0.3	0