
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5853864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Hole Extraction of WO _x /V ₂ O _x Dopantâ€Free Contact for pâ€type Silicon Solar Cell. Advanced Materials Interfaces, 2022, 9, .	3.7	7
2	Gadolinium Fluoride as a High-Thickness-Tolerant Electron-Selective Contact Material for Solar Cells. ACS Applied Energy Materials, 2022, 5, 4351-4357.	5.1	8
3	Influence of Oxygen on Sputtered Titaniumâ€Doped Indium Oxide Thin Films and Their Application in Silicon Heterojunction Solar Cells. Solar Rrl, 2021, 5, 2000501.	5.8	15
4	Dopantâ€Free Bifacial Silicon Solar Cells. Solar Rrl, 2021, 5, 2000771.	5.8	11
5	Yttrium Fluoride-Based Electron-Selective Contacts for Crystalline Silicon Solar Cells. ACS Applied Energy Materials, 2021, 4, 2158-2164.	5.1	14
6	Highâ€Performance Europium Fluoride Electronâ€5elective Contacts for Efficient Crystalline Silicon Solar Cells. Solar Rrl, 2021, 5, 2100057.	5.8	11
7	Cerous Fluoride Dopantâ€Free Electronâ€Selective Contact for Crystalline Silicon Solar Cells. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100135.	2.4	11
8	Dopantâ€Free Backâ€Contacted Silicon Solar Cells with an Efficiency of 22.1%. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900688.	2.4	27
9	Degradation Mechanism and Stability Improvement of Dopant-Free ZnO/LiF <i>_x</i> /Al Electron Nanocontacts in Silicon Heterojunction Solar Cells. ACS Applied Nano Materials, 2020, 3, 11391-11398.	5.0	18
10	Development of Conductive SiCx:H as a New Hydrogenation Technique for Tunnel Oxide Passivating Contacts. ACS Applied Materials & Interfaces, 2020, 12, 29986-29992.	8.0	2
11	Highâ€Performance and Stable Dopantâ€Free Silicon Solar Cells with Magnesium Acetylacetonate Electronâ€Selective Contacts. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000103.	2.4	9
12	Mass production of industrial tunnel oxide passivated contacts (iâ€TOPCon) silicon solar cells with average efficiency over 23% and modules over 345ÂW. Progress in Photovoltaics: Research and Applications, 2019, 27, 827-834.	8.1	131
13	Efficient silicon solar cells applying cuprous sulfide as hole-selective contact. Journal of Materials Science, 2019, 54, 12650-12658.	3.7	13
14	Lowâ€Temperature Growth of Hard Carbon with Graphite Crystal for Sodiumâ€Ion Storage with High Initial Coulombic Efficiency: A General Method. Advanced Energy Materials, 2019, 9, 1803648.	19.5	132
15	12.29% Low Temperature–Processed Dopantâ€Free CdS/p‣i Heterojunction Solar Cells. Advanced Materials Interfaces, 2019, 6, 1900367.	3.7	29
16	Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 13645-13651.	8.0	35
17	Efficiency enhancement of bifacial PERC solar cells with laserâ€doped selective emitter and doubleâ€screenâ€printed Al grid. Progress in Photovoltaics: Research and Applications, 2018, 26, 752-760.	8.1	24
18	Fully Solutionâ€Processed TCOâ€Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications. Advanced Energy Materials, 2018, 8, 1701569.	19.5	77

#	Article	IF	CITATIONS
19	Conductive Cuprous Iodide Hole-Selective Contacts with Thermal and Ambient Stability for Silicon Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 43699-43706.	8.0	19
20	Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells. , 2018, , .		1
21	Surface modification of micro-sized CuO by in situ-growing heterojunctions CuO/Cu2O and CuO/Cu2O/Cu: effect on surface charges and photogenerated carrier lifetime. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	16
22	22% efficient dopant-free interdigitated back contact silicon solar cells. AIP Conference Proceedings, 2018, , .	0.4	20
23	Growth of a Large-Area, Free-Standing, Highly Conductive and Fully Foldable Silver Film with Inverted Pyramids for Wearable Electronics Applications. ACS Applied Materials & Interfaces, 2017, 9, 5312-5318.	8.0	2
24	Dopant-free multilayer back contact silicon solar cells employing V ₂ O _x /metal/V ₂ O _x as an emitter. RSC Advances, 2017, 7, 23851-23858.	3.6	48
25	>20.5% Diamond Wire Sawn Multicrystalline Silicon Solar Cells With Maskless Inverted Pyramid Like Texturing. IEEE Journal of Photovoltaics, 2017, 7, 1264-1269.	2.5	20
26	Preparation and optimization of a molybdenum electrode for CIGS solar cells. AIP Advances, 2016, 6, .	1.3	11
27	Silicon based solar cells using a multilayer oxide as emitter. AIP Advances, 2016, 6, 085304.	1.3	11
28	Magnetic fluids' stability improved by oleic acid bilayer-coated structure via one-pot synthesis. Chemical Papers, 2016, 70, .	2.2	14
29	Dopantâ€free back contact silicon heterojunction solar cells employing transition metal oxide emitters. Physica Status Solidi - Rapid Research Letters, 2016, 10, 662-667.	2.4	62
30	Investigation of shunt solar cells' currents based on equivalent circuit model. Science China Technological Sciences, 2016, 59, 1391-1398.	4.0	4
31	Reconstructing ZnO quantum dot assembled tubular structures from nanotubes within graphene matrix via ongoing pulverization towards high-performance lithium storage. Journal of Materials Chemistry A, 2016, 4, 19123-19131.	10.3	18
32	Growth of vertically aligned MoS ₂ nanosheets on a Ti substrate through a self-supported bonding interface for high-performance lithium-ion batteries: a general approach. Journal of Materials Chemistry A, 2016, 4, 5932-5941.	10.3	51
33	One-step synthesis of Nb-doped TiO2 rod@Nb2O5 nanosheet core–shell heterostructures for stable high-performance lithium-ion batteries. RSC Advances, 2016, 6, 27094-27101.	3.6	16
34	Hydrophilic Magnetochromatic Nanoparticles with Controllable Sizes and Super-high Magnetization for Visualization of Magnetic Field Intensity. Scientific Reports, 2015, 5, 17063.	3.3	29
35	Progress in Photovoltaic Devices and Systems. International Journal of Photoenergy, 2015, 2015, 1-3.	2.5	0
36	Confined-space synthesis of single crystal TiO2 nanowires in atmospheric vessel at low temperature: a generalized approach. Scientific Reports, 2015, 5, 8129.	3.3	20

#	Article	IF	CITATIONS
37	Controlled synthesis of series NixCo3-xO4 products: Morphological evolution towards quasi-single-crystal structure for high-performance and stable lithium-ion batteries. Scientific Reports, 2015, 5, 11584.	3.3	16
38	Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries. Scientific Reports, 2015, 4, 4479.	3.3	41
39	Investigating the Impact of Shading Effect on the Characteristics of a Large-Scale Grid-Connected PV Power Plant in Northwest China. International Journal of Photoenergy, 2014, 2014, 1-9.	2.5	25
40	Thermal Field Analysis and Simulation of an Infrared Belt Furnace Used for Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-7.	2.5	1
41	Al-alloyed local contacts for industrial PERC cells by local printing. , 2014, , .		7
42	Preparation of self-assembled Ag nanoparticles for effective light-trapping in crystalline silicon solar cells. RSC Advances, 2014, 4, 13757.	3.6	13
43	Synergistic assembly of nanoparticle aggregates and texture nanosheets into hierarchical TiO2 core–shell structures for enhanced light harvesting in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 6175.	10.3	9
44	One-step ammoniahydrothermal synthesis of single crystal anatase TiO ₂ nanowires for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 2110-2117.	10.3	39
45	Layer-by-Layer CdS-ModifiedTiO2Film Electrodes for Enhancing the Absorption and Energy Conversion Efficiency of Solar Cells. International Journal of Photoenergy, 2012, 2012, 1-5.	2.5	2
46	Structure simulation of screen printed local back surface field for rear passivated silicon solar cells. , 2012, , .		2
47	Synthesis of long TiO2 nanowire arrays with high surface areas via synergistic assembly route for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 17531.	6.7	74
48	Specific contact resistance measurements on C-Si solar cells by novel TLM method. , 2012, , .		4
49	Hierarchical rutile TiO2 mesocrystals assembled by nanocrystals-oriented attachment mechanism. CrystEngComm, 2012, 14, 2278.	2.6	35
50	Study of crystalline silicon solar cells with integrated bypass diodes. Science China Technological Sciences, 2012, 55, 594-599.	4.0	20
51	Analysis of industrial c‣i solar cell's front metallization by advanced numerical simulation. Progress in Photovoltaics: Research and Applications, 2012, 20, 490-500.	8.1	21
52	In situ controlled synthesis of various TiO2 nanostructured materials via a facile hydrothermal route. Journal of Nanoparticle Research, 2011, 13, 1855-1863.	1.9	10
53	Flexible TiO2 nanotube-based dye-sensitized solar cells using laser-drilled microhole array electrodes. Applied Physics A: Materials Science and Processing, 2011, 102, 127-130.	2.3	13
54	Fabrication of three-dimensional ZnO with hierarchical structure via an electrodeposition process. Applied Physics A: Materials Science and Processing, 2011, 103, 463-466.	2.3	5

#	Article	lF	CITATIONS
55	Study of large area hydrogenated microcrystalline silicon p-layers for back surface field in crystalline silicon solar cells. Science China Technological Sciences, 2011, 54, 63-69.	4.0	1
56	Effects of high temperature annealing on the dislocation density and electrical properties of upgraded metallurgical grade multicrystalline silicon. Science Bulletin, 2011, 56, 695-699.	1.7	9
57	Study on the SiN x /Al rear reflectance performance of crystalline silicon solar cells. Science China Technological Sciences, 2010, 53, 3209-3213.	4.0	3
58	ZnO microsheet modified TiO2 nanoparticle composite films for dye-sensitized solar cells. Science Bulletin, 2010, 55, 1945-1948.	1.7	4
59	Growth behavior of polycrystalline silicon thin films deposited by RTCVD on quartz substrates. Science Bulletin, 2010, 55, 2057-2062.	1.7	2
60	Observation on Defects in Poly-Si Films Prepared by RTCVD Under Nonideal Conditions. Journal of Electronic Materials, 2010, 39, 732-737.	2.2	1
61	Shunt removal and patching for crystalline silicon solar cells using infrared imaging and laser cutting. Progress in Photovoltaics: Research and Applications, 2010, 18, 54-60.	8.1	19
62	The use of Ti meshes with selfâ€organized TiO ₂ nanotubes as photoanodes of allâ€ī dyeâ€sensitized solar cells. Progress in Photovoltaics: Research and Applications, 2010, 18, 285-290.	8.1	10
63	CdS/CdSe cosensitized oriented single-crystalline TiO2 nanowire array for solar cell application. Journal of Applied Physics, 2010, 108, .	2.5	27
64	Determination of the specific shunt resistances under and away from the front contacts of solar cell. Science in China Series D: Earth Sciences, 2009, 52, 3082-3084.	0.9	3
65	Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Applied Physics A: Materials Science and Processing, 2009, 97, 25-29.	2.3	48
66	Frontside illuminated TiO2 nanotube dye-sensitized solar cells using multifunctional microchannel array electrodes. Applied Physics Letters, 2009, 95, .	3.3	15
67	Effects of magnetic fluids on crystallization characterizations in a multi-component and multiphase system. Science in China Series B: Chemistry, 2008, 51, 347-353.	0.8	1
68	Novel photoelectrochromic cells fabricated with wirelike photo-electrode. Science Bulletin, 2008, 53, 3173-3177.	9.0	5
69	Study on the improved structure of dye-sensitized solar cells for enhancing light absorption. Frontiers of Materials Science in China, 2007, 1, 293-296.	0.5	4
70	Surface chemistry of nanoscale Fe3O4 dispersed in magnetic fluids. Science in China Series B: Chemistry, 2007, 50, 754-758.	0.8	6
71	A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally. Science in China Series D: Earth Sciences, 2006, 49, 663-673.	0.9	7
72	Preparation of two kinds of superparamagnetic carriers-supported cis-platinum complexes and the comparison of their characteristics. Science Bulletin, 2006, 51, 151-157.	1.7	5

#	Article	IF	CITATIONS
73	A new improved structure of dye-sensitized solar cells with reflection film. Science Bulletin, 2006, 51, 369-373.	1.7	10