List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5852430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved approach based on MALDI-TOF MS for establishment of the fish mucus protein pattern for geographic discrimination of Sparus aurata. Food Chemistry, 2022, 372, 131237.	8.2	7
2	Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality. Foods, 2022, 11, 366.	4.3	10
3	Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. Applied Sciences (Switzerland), 2022, 12, 1703.	2.5	25
4	µQuEChERS Combined with UHPLC-PDA as a State-of-the-Art Analytical Approach for Quantification of Chlorpropham in Potato. Separations, 2022, 9, 77.	2.4	1
5	Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules, 2022, 27, 2953.	3.8	55
6	High throughput analytical approach based on μQuEChERS combined with UHPLC-PDA for analysis of bioactive secondary metabolites in edible flowers. Food Chemistry, 2022, 393, 133371.	8.2	6
7	Valorization of Spent Coffee Grounds as a Natural Source of Bioactive Compounds for Several Industrial Applications—A Volatilomic Approach. Foods, 2022, 11, 1731.	4.3	5
8	Recent Developments in the Applications of Fingerprinting Technology in the Food Field. Foods, 2022, 11, 2006.	4.3	0
9	Overview of Different Modes and Applications of Liquid Phase-Based Microextraction Techniques. Processes, 2022, 10, 1347.	2.8	7
10	Global volatile signature and polyphenols patterns in Vespolina wines according to vintage. International Journal of Food Science and Technology, 2021, 56, 1551-1561.	2.7	4
11	Analytical Platforms for the Determination of Phospholipid Turnover in Breast Cancer Tissue: Role of Phospholipase Activity in Breast Cancer Development. Metabolites, 2021, 11, 32.	2.9	5
12	Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. Applied Sciences (Switzerland), 2021, 11, 2130.	2.5	11
13	The Flavor Chemistry of Fortified Winesâ \in "A Comprehensive Approach. Foods, 2021, 10, 1239.	4.3	14
14	A high-throughput analytical strategy based on QuEChERS-dSPE/HPLC–DAD–ESI-MSn to establish the phenolic profile of tropical fruits. Journal of Food Composition and Analysis, 2021, 98, 103844.	3.9	4
15	Simultaneous determination of N-methyl carbamate residues in pork tissues based on ultrasound assisted QuEChERS-dSPE extraction followed by reversed phase LC-FLD analysis. LWT - Food Science and Technology, 2021, 144, 111199.	5.2	5
16	Comprehensive Insight from Phthalates Occurrence: From Health Outcomes to Emerging Analytical Approaches. Toxics, 2021, 9, 157.	3.7	21
17	Emerging Contaminants in Seafront Zones. Environmental Impact and Analytical Approaches. Separations, 2021, 8, 95.	2.4	5
18	An integrative approach based on GC–qMS and NMR metabolomics data as a comprehensive strategy to search potential breast cancer biomarkers. Metabolomics, 2021, 17, 72	3.0	6

#	Article	IF	CITATIONS
19	Forensic attribution profiling of food using liquid chromatography–mass spectrometry. , 2021, , 97-121.		1
20	Evaluation of Fatty Acids Profile as a Useful Tool towards Valorization of By-Products of Agri-Food Industry. Foods, 2021, 10, 2867.	4.3	4
21	Polyphenols, biogenic amines and amino acids patterns in Verdelho wines according to vintage. Microchemical Journal, 2020, 153, 104383.	4.5	12
22	Monitoring Phthalates in Table and Fortified Wines by Headspace Solid-Phase Microextraction Combined with Gas Chromatography–Mass Spectrometry Analysis. Journal of Agricultural and Food Chemistry, 2020, 68, 8431-8437.	5.2	8
23	Geographical differentiation of apple ciders based on volatile fingerprint. Food Research International, 2020, 137, 109550.	6.2	17
24	Residue Analysis of Insecticides in Potatoes by QuEChERS-dSPE/UHPLC-PDA. Foods, 2020, 9, 1000.	4.3	11
25	Evaluation of Volatilomic Fingerprint from Apple Fruits to Ciders: A Useful Tool to Find Putative Biomarkers for Each Apple Variety. Foods, 2020, 9, 1830.	4.3	19
26	Lipid biosignature of breast cancer tissues by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Breast Cancer Research and Treatment, 2020, 182, 9-19.	2.5	9
27	Application of Quality-by-Design Approach in the Analytical Method Development for Quantification of Sugars in Sugarcane Honey by Reversed-Phase Liquid Chromatography. Food Analytical Methods, 2020, 13, 1634-1649.	2.6	5
28	Chemical/Instrumental Approaches to the Evaluation of Wine Chemistry. Molecules, 2020, 25, 1363.	3.8	0
29	Exploring the potential of wine industry by-products as source of additives to improve the quality of aquafeed. Microchemical Journal, 2020, 155, 104758.	4.5	21
30	An Approach of the Madeira Wine Chemistry. Beverages, 2020, 6, 12.	2.8	28
31	Typicality Assessment of Onions (Allium cepa) from Different Geographical Regions Based on the Volatile Signature and Chemometric Tools. Foods, 2020, 9, 375.	4.3	13
32	Differential volatile organic compounds signatures of apple juices from Madeira Island according to variety and geographical origin. Microchemical Journal, 2019, 150, 104094.	4.5	28
33	Current trends on microextraction by packed sorbent – fundamentals, application fields, innovative improvements and future applications. Analyst, The, 2019, 144, 5048-5074.	3.5	39
34	An AIE and ESIPT active Schiff base as colorimetric probe of Fe3+ and turn-on fluorescent probe of Al3+: Experimental and theoretical studies. Tetrahedron Letters, 2019, 60, 150918.	1.4	17
35	Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules, 2019, 24, 3028.	3.8	36
36	Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends in Food Science and Technology, 2019, 85, 163-176.	15.1	145

ROSA M PERESTRELO

#	Article	IF	CITATIONS
37	Breast Cancer Metabolomics: From Analytical Platforms to Multivariate Data Analysis. A Review. Metabolites, 2019, 9, 102.	2.9	46
38	Untargeted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS. Microchemical Journal, 2019, 148, 643-651.	4.5	17
39	Volatomic pattern of breast cancer and cancer-free tissues as a powerful strategy to identify potential biomarkers. Analyst, The, 2019, 144, 4153-4161.	3.5	19
40	Implementing a central composite design for the optimization of solid phase microextraction to establish the urinary volatomic expression: a first approach for breast cancer. Metabolomics, 2019, 15, 64.	3.0	24
41	QuEChERS - Fundamentals, relevant improvements, applications and future trends. Analytica Chimica Acta, 2019, 1070, 1-28.	5.4	299
42	Differentiation of Fresh and Processed Fruit Juices Using Volatile Composition. Molecules, 2019, 24, 974.	3.8	21
43	Comparison of high-throughput microextraction techniques, MEPS and μ-SPEed, for the determination of polyphenols in baby food by ultrahigh pressure liquid chromatography. Food Chemistry, 2019, 292, 14-23.	8.2	22
44	Untargeted Urinary 1H NMR-Based Metabolomic Pattern as a Potential Platform in Breast Cancer Detection. Metabolites, 2019, 9, 269.	2.9	21
45	Prediction of Terpenoid Toxicity Based on a Quantitative Structure–Activity Relationship Model. Foods, 2019, 8, 628.	4.3	12
46	Food fingerprints – A valuable tool to monitor food authenticity and safety. Food Chemistry, 2019, 278, 144-162.	8.2	125
47	Off-Flavors in Alcoholic Beverages: An Overview. , 2019, , 595-622.		0
48	An improved and miniaturized analytical strategy based on μ-QuEChERS for isolation of polyphenols. A powerful approach for quality control of baby foods. Microchemical Journal, 2018, 139, 110-118.	4.5	26
49	Fingerprint targeted compounds in authenticity of sugarcane honey - An approach based on chromatographic and statistical data. LWT - Food Science and Technology, 2018, 96, 82-89.	5.2	11
50	Rapid spectrophotometric methods as a tool to assess the total phenolics and antioxidant potential over grape ripening: a case study of Madeira grapes. Journal of Food Measurement and Characterization, 2018, 12, 1754-1762.	3.2	8
51	Unraveling Vitis vinifera L. grape maturity markers based on integration of terpenic pattern and chemometric methods. Microchemical Journal, 2018, 142, 367-376.	4.5	11
52	Establishment of the Volatile Signature of Wine-Based Aromatic Vinegars Subjected to Maceration. Molecules, 2018, 23, 499.	3.8	13
53	Impact of storage time and temperature on volatomic signature of Tinta Negra wines by LLME/GC- IT MS. Food Research International, 2018, 109, 99-111.	6.2	13
54	Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants. Food Chemistry, 2017, 227, 111-121.	8.2	28

#	Article	IF	CITATIONS
55	Volatile metabolomic signature of human breast cancer cell lines. Scientific Reports, 2017, 7, 43969.	3.3	54
56	A useful strategy based on chromatographic data combined with quality-by-design approach for food analysis applications. The case study of furanic derivatives in sugarcane honey. Journal of Chromatography A, 2017, 1520, 117-126.	3.7	16
57	Impact of storage time and temperature on furanic derivatives formation in wines using microextraction by packed sorbent tandem with ultrahigh pressure liquid chromatography. LWT - Food Science and Technology, 2017, 76, 40-47.	5.2	19
58	Establishment of authenticity and typicality of sugarcane honey based on volatile profile and multivariate analysis. Food Control, 2017, 73, 1176-1188.	5.5	28
59	A fast and environment-friendly MEPS PEP /UHPLC-PDA methodology to assess 3-hydroxy-4,5-dimethyl-2(5H)-furanone in fortified wines. Food Chemistry, 2017, 214, 686-693.	8.2	10
60	Wines: Madeira, Port and Sherry Fortified Wines – The Sui Generis and Notable Peculiarities. Major Differences and Chemical Patterns. , 2016, , 534-555.		4
61	A powerful approach to explore the potential of medicinal plants as a natural source of odor and antioxidant compounds. Journal of Food Science and Technology, 2016, 53, 132-144.	2.8	13
62	Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography. Journal of Chromatography A, 2015, 1381, 54-63.	3.7	22
63	Determination of urinary levels of leukotriene B4 using ad highly specific and sensitive methodology based on automatic MEPS combined with UHPLC-PDA analysis. Talanta, 2015, 144, 382-389.	5.5	9
64	Octadecyl functionalized core–shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites. Journal of Chromatography A, 2015, 1393, 18-25.	3.7	23
65	Establishment of Monstera deliciosa fruit volatile metabolomic profile at different ripening stages using solid-phase microextraction combined with gas chromatography–mass spectrometry. Food Research International, 2015, 67, 409-417.	6.2	21
66	Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends. Analytical and Bioanalytical Chemistry, 2014, 406, 2101-2122.	3.7	38
67	An exploratory study to evaluate the potential of nanohydroxyapatite as a powerful sorbent for efficient extraction of volatile organic metabolites, potential biomarkers of cancer. Analytical Methods, 2014, 6, 6051.	2.7	3
68	A useful approach for the differentiation of wines according to geographical origin based on global volatile patterns. Journal of Separation Science, 2014, 37, 1974-1981.	2.5	23
69	Establishment of the varietal profile of Vitis vinifera L. grape varieties from different geographical regions based on HS-SPME/GC–qMS combined with chemometric tools. Microchemical Journal, 2014, 116, 107-117.	4.5	31
70	Microextraction by Packed Sorbent (MEPS) and Solid-Phase Microextraction (SPME) as Sample Preparation Procedures for the Metabolomic Profiling of Urine. Metabolites, 2014, 4, 71-97.	2.9	70
71	Allergic asthma exhaled breath metabolome: A challenge for comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2012, 1254, 87-97.	3.7	106
72	Solid phase microextraction as a reliable alternative to conventional extraction techniques to evaluate the pattern of hydrolytically released components in Vitis vinifera L. grapes. Talanta, 2012, 95, 1-11.	5.5	19

#	Article	IF	CITATIONS
73	Phenolic profile of Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC–DAD–ESI-MSn. Food Chemistry, 2012, 135, 94-104.	8.2	91
74	In-Depth Search Focused on Furans, Lactones, Volatile Phenols, and Acetals As Potential Age Markers of Madeira Wines by Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry Combined with Solid Phase Microextraction. Journal of Agricultural and Food Chemistry, 2011, 59, 3186-3204.	5.2	78
75	Distinctive Characteristics of Madeira Wine Regarding Its Traditional Winemaking and Modern Analytical Methodologies. Advances in Food and Nutrition Research, 2011, 63, 207-249.	3.0	16
76	Optimisation of solid-phase microextraction combined with gas chromatography–mass spectrometry based methodology to establish the global volatile signature in pulp and skin of Vitis vinifera L. grape varieties. Talanta, 2011, 85, 1483-1493.	5.5	63
77	Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction as a powerful tool for quantification of ethyl carbamate in fortified wines. The case study of Madeira wine. Journal of Chromatography A, 2010, 1217, 3441-3445.	3.7	70
78	Characterization of volatile substances in apples from <i>Rosaceae</i> family by headspace solidâ€phase microextraction followed by GCâ€qMS. Journal of Separation Science, 2009, 32, 1875-1888.	2.5	80
79	Comparative analysis of the volatile fraction from Annona cherimola Mill. cultivars by solid-phase microextraction and gas chromatography–quadrupole mass spectrometry detection. Talanta, 2009, 77, 1087-1096.	5.5	49
80	Potentialities of two solventless extraction approaches—Stir bar sorptive extraction and headspace solid-phase microextraction for determination of higher alcohol acetates, isoamyl esters and ethyl esters in wines. Talanta, 2009, 80, 622-630.	5.5	41
81	Optimisation of stir bar sorptive extraction and liquid desorption combined with large volume injection-gas chromatography–quadrupole mass spectrometry for the determination of volatile compounds in wines. Analytica Chimica Acta, 2008, 624, 79-89.	5.4	57
82	Volatile flavour constituent patterns of <i>Terras Madeirenses </i> red wines extracted by dynamic headspace solidâ€phase microextraction. Journal of Separation Science, 2008, 31, 1841-1850.	2.5	19
83	Comparison of two extraction methods for evaluation of volatile constituents patterns in commercial whiskeysElucidation of the main odour-active compounds. Talanta, 2007, 74, 78-90.	5.5	38
84	Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chemistry, 2007, 105, 204-214.	8.2	251
85	Comparative study of the whisky aroma profile based on headspace solid phase microextraction using different fibre coatings. Journal of Chromatography A, 2007, 1150, 198-207.	3.7	98
86	Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Analytica Chimica Acta, 2006, 563, 154-164.	5.4	216
87	Evaluation of volatile constituents profile in Scotch whisky by SPME/GC-ITMS. , 2006, , .		1