Greg M Findlay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5852148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic validation and targeting of signalling networks that are dysregulated in intellectual disability. FEBS Journal, 2022, , .	4.7	0
2	Activity-based probe profiling of RNF12 E3 ubiquitin ligase function in Tonne-Kalscheuer syndrome. Life Science Alliance, 2022, 5, e202101248.	2.8	2
3	An RNF12-USP26 amplification loop drives germ cell specification and is disrupted by disease-associated mutations. Science Signaling, 2022, 15, .	3.6	5
4	Phosphorylation of NANOG by casein kinase I regulates embryonic stem cell selfâ€renewal. FEBS Letters, 2021, 595, 14-25.	2.8	8
5	A novel RLIM/RNF12 variant disrupts protein stability and function to cause severe Tonne–Kalscheuer syndrome. Scientific Reports, 2021, 11, 9560.	3.3	5
6	An ERK5–KLF2 signalling module regulates early embryonic gene expression and telomere rejuvenation in stem cells. Biochemical Journal, 2021, 478, 4119-4136.	3.7	7
7	LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Frontiers in Cell and Developmental Biology, 2021, 9, 659951.	3.7	13
8	Functional Diversification of SRSF Protein Kinase to Control Ubiquitin-Dependent Neurodevelopmental Signaling. Developmental Cell, 2020, 55, 629-647.e7.	7.0	37
9	Phosphoproteomics identifies a bimodal EPHA2 receptor switch that promotes embryonic stem cell differentiation. Nature Communications, 2020, 11, 1357.	12.8	12
10	Profiling embryonic stem cell differentiation by MALDI TOF mass spectrometry: development of a reproducible and robust sample preparation workflow. Analyst, The, 2019, 144, 6371-6381.	3.5	9
11	RNF12 X-Linked Intellectual Disability Mutations Disrupt E3 Ligase Activity and Neural Differentiation. Cell Reports, 2018, 23, 1599-1611.	6.4	34
12	Protein Kinases in Pluripotency—Beyond the Usual Suspects. Journal of Molecular Biology, 2017, 429, 1504-1520.	4.2	18
13	Brd4â€Brd2 isoform switching coordinates pluripotent exit and Smad2â€dependent lineage specification. EMBO Reports, 2017, 18, 1108-1122.	4.5	26
14	Molecular Mechanisms of Stem Cell Pluripotency and Cell Fate Specification. Journal of Molecular Biology, 2017, 429, 1439-1440.	4.2	0
15	A Simple Method to Identify Kinases That Regulate Embryonic Stem Cell Pluripotency by High-throughput Inhibitor Screening. Journal of Visualized Experiments, 2017, , .	0.3	2
16	Erk5 Is a Key Regulator of Naive-Primed Transition and Embryonic Stem Cell Identity. Cell Reports, 2016, 16, 1820-1828.	6.4	35
17	A quantitative liposome microarray to systematically characterize protein-lipid interactions. Nature Methods, 2014, 11, 47-50.	19.0	77
18	Directed Network Wiring Identifies a Key Protein Interaction in Embryonic Stem Cell Differentiation. Molecular Cell, 2014, 54, 1034-1041.	9.7	32

GREG M FINDLAY

#	Article	IF	CITATIONS
19	Interaction Domains of Sos1/Grb2 Are Finely Tuned for Cooperative Control of Embryonic Stem Cell Fate. Cell, 2013, 152, 1008-1020.	28.9	53
20	PP2AT61É> Is an Inhibitor of MAP4K3 in Nutrient Signaling to mTOR. Molecular Cell, 2010, 37, 633-642.	9.7	114
21	How is SOS activated? Let us count the ways. Nature Structural and Molecular Biology, 2008, 15, 538-540.	8.2	14
22	A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochemical Journal, 2007, 403, 13-20.	3.7	240
23	Hyperactivation of Mammalian Target of Rapamycin (mTOR) Signaling by a Gain-of-Function Mutant of the Rheb GTPase*. Journal of Biological Chemistry, 2006, 281, 19793-19797.	3.4	61
24	Restraining PI3K: mTOR signalling goes back to the membrane. Trends in Biochemical Sciences, 2005, 30, 35-42.	7.5	331
25	TSC1-2 tumour suppressor and regulation of mTOR signalling: linking cell growth and proliferation?. Current Opinion in Genetics and Development, 2005, 15, 69-76.	3.3	34
26	The TSC1-2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. Journal of Cell Biology, 2004, 166, 213-223.	5.2	1,013