
Michael Freeling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5851868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	21.4	1,893
2	Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-Genome, Segmental, or by Transposition. Annual Review of Plant Biology, 2009, 60, 433-453.	18.7	838
3	Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4069-4074.	7.1	644
4	The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.	21.4	472
5	How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant Journal, 2008, 53, 661-673.	5.7	469
6	Origin and evolution of the octoploid strawberry genome. Nature Genetics, 2019, 51, 541-547.	21.4	469
7	Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 2006, 16, 805-814.	5.5	421
8	Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Research, 2006, 16, 934-946.	5.5	393
9	Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids. Plant Physiology, 2008, 148, 1772-1781.	4.8	376
10	The Maize rough sheath2 Gene and Leaf Development Programs in Monocot and Dicot Plants. Science, 1999, 284, 154-156.	12.6	307
11	Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature, 2015, 527, 508-511.	27.8	291
12	Following Tetraploidy in Maize, a Short Deletion Mechanism Removed Genes Preferentially from One of the Two Homeologs. PLoS Biology, 2010, 8, e1000409.	5.6	260
13	Gene retention, fractionation and subgenome differences in polyploid plants. Nature Plants, 2018, 4, 258-268.	9.3	257
14	Genomic Duplication, Fractionation and the Origin of Regulatory Novelty. Genetics, 2004, 166, 935-945.	2.9	205
15	High-resolution mapping of open chromatin in the rice genome. Genome Research, 2012, 22, 151-162.	5.5	205
16	Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Current Opinion in Plant Biology, 2012, 15, 131-139.	7.1	194
17	The Value of Nonmodel Genomes and an Example Using SynMap Within CoGe to Dissect the Hexaploidy that Predates the Rosids. Tropical Plant Biology, 2008, 1, 181-190.	1.9	193
18	Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5283-5288.	7.1	172

MICHAEL FREELING

#	Article	IF	CITATIONS
19	Altered Patterns of Fractionation and Exon Deletions in <i>Brassica rapa</i> Support a Two-Step Model of Paleohexaploidy. Genetics, 2012, 190, 1563-1574.	2.9	163
20	Two Evolutionarily Distinct Classes of Paleopolyploidy. Molecular Biology and Evolution, 2014, 31, 448-454.	8.9	159
21	Many or most genes in <i>Arabidopsis</i> transposed after the origin of the order Brassicales. Genome Research, 2008, 18, 1924-1937.	5.5	157
22	Genes Identified by Visible Mutant Phenotypes Show Increased Bias toward One of Two Subgenomes of Maize. PLoS ONE, 2011, 6, e17855.	2.5	145
23	Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinformatics, 2011, 12, 102.	2.6	142
24	Epigenetic regulation of subgenome dominance following whole genome triplication in <i>Brassica rapa</i> . New Phytologist, 2016, 211, 288-299.	7.3	100
25	ACQUISITION OF IDENTITY IN THE DEVELOPING LEAF. Annual Review of Cell and Developmental Biology, 1996, 12, 257-304.	9.4	98
26	Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Current Opinion in Genetics and Development, 2015, 35, 110-118.	3.3	94
27	Utility and distribution of conserved noncoding sequences in the grasses. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6147-6151.	7.1	93
28	Cell lineage and its consequences in higher plants. Plant Journal, 1991, 1, 3-8.	5.7	81
29	Ectopic Expression of the Maize Homeobox Gene <i>Liguleless3</i> Alters Cell Fates in the Leaf1. Plant Physiology, 1999, 119, 651-662.	4.8	80
30	Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biology, 2021, 22, 166.	8.8	80
31	Grasses as a Single Genetic System. Reassessment 2001. Plant Physiology, 2001, 125, 1191-1197.	4.8	78
32	Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis. Development (Cambridge), 2002, 129, 4581-4589.	2.5	76
33	Conserved noncoding sequences (CNSs) in higher plants. Current Opinion in Plant Biology, 2009, 12, 126-132.	7.1	75
34	Escape from Preferential Retention Following Repeated Whole Genome Duplications in Plants. Frontiers in Plant Science, 2012, 3, 94.	3.6	73
35	Maternal components of <scp>RNA</scp> â€directed <scp>DNA</scp> methylation are required for seed development in <i>Brassica rapa</i> . Plant Journal, 2018, 94, 575-582.	5.7	72
36	Epigenetic reprogramming during vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22184-22189.	7.1	69

MICHAEL FREELING

#	Article	IF	CITATIONS
37	Functional Analysis of Deletion Derivatives of the Maize Transposon MuDR Delineates Roles for the MURA and MURB Proteins. Genetics, 1999, 151, 331-341.	2.9	61
38	Mutator Transposase Is Widespread in the Grasses. Plant Physiology, 2001, 125, 1293-1303.	4.8	59
39	Genetic analysis of mutations that alter cell fates in maize leaves: DominantLiguleless mutations. , 1996, 18, 198-222.		57
40	Arabidopsis intragenomic conserved noncoding sequence. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3348-3353.	7.1	55
41	Regulatory changes as a consequence of transposon insertion. Genesis, 1999, 25, 291-296.	2.1	53
42	Maize mutants and variants altering developmental time and their heterochronic interactions. BioEssays, 1992, 14, 227-236.	2.5	52
43	Transposed Genes in Arabidopsis Are Often Associated with Flanking Repeats. PLoS Genetics, 2010, 6, e1000949.	3.5	52
44	Abundant expression of maternal siRNAs is a conserved feature of seed development. Proceedings of the United States of America, 2020, 117, 15305-15315.	7.1	49
45	Genomic Duplication, Fractionation and the Origin of Regulatory Novelty. Genetics, 2004, 166, 935-945.	2.9	45
46	G-Boxes, Bigfoot Genes, and Environmental Response: Characterization of Intragenomic Conserved Noncoding Sequences in Arabidopsis. Plant Cell, 2007, 19, 1441-1457.	6.6	42
47	Genetic Evidence and the Origin of Maize. Latin American Antiquity, 2001, 12, 84-86.	0.6	39
48	The Most Deeply Conserved Noncoding Sequences in Plants Serve Similar Functions to Those in Vertebrates Despite Large Differences in Evolutionary Rates. Plant Cell, 2014, 26, 946-961.	6.6	38
49	Co-option of the polarity gene network shapes filament morphology in angiosperms. Scientific Reports, 2014, 4, 6194.	3.3	37
50	A Solution to the C-Value Paradox and the Function of Junk DNA: The Genome Balance Hypothesis. Molecular Plant, 2015, 8, 899-910.	8.3	36
51	Dose–Sensitivity, Conserved Non-Coding Sequences, and Duplicate Gene Retention Through Multiple Tetraploidies in the Grasses. Frontiers in Plant Science, 2011, 2, 2.	3.6	35
52	Picking up the Ball at the K/Pg Boundary: The Distribution of Ancient Polyploidies in the Plant Phylogenetic Tree as a Spandrel of Asexuality with Occasional Sex. Plant Cell, 2017, 29, 202-206.	6.6	33
53	Automated conserved non-coding sequence (CNS) discovery reveals differences in gene content and promoter evolution among grasses. Frontiers in Plant Science, 2013, 4, 170.	3.6	32
54	FAIR: A Call to Make Published Data More Findable, Accessible, Interoperable, and Reusable. Molecular Plant, 2018, 11, 1105-1108.	8.3	31

MICHAEL FREELING

#	Article	IF	CITATIONS
55	Mutator-Suppressible Alleles of rough sheath1 and liguleless3 in Maize Reveal Multiple Mechanisms for Suppression. Genetics, 2000, 154, 437-446.	2.9	27
56	HAIRYâ€SHEATH FRAYED #1â€O: A SYSTEMIC, HETEROCHRONIC MUTANT OF MAIZE THAT SPECIFIES SLOW DEVELOPMENTAL STAGE TRANSITIONS. American Journal of Botany, 1991, 78, 747-765.	1.7	23
57	Biomechanical analysis of the Rolled (RLD) leaf phenotype of maize. American Journal of Botany, 2000, 87, 625-633.	1.7	23
58	The contributions from the progenitor genomes of the mesopolyploid Brassiceae are evolutionarily distinct but functionally compatible. Genome Research, 2021, 31, 799-810.	5.5	21
59	Advances in understanding cis regulation of the plant gene with an emphasis on comparative genomics. Current Opinion in Plant Biology, 2015, 27, 141-147.	7.1	20
60	Lax Midrib1-O, A systemic, heterochronic mutant of maize. American Journal of Botany, 1998, 85, 481-491.	1.7	17
61	Hairy-Sheath Frayed # 1-0: A Systemic, Heterochronic Mutant of Maize that Specifies Slow Developmental Stage Transitions. American Journal of Botany, 1991, 78, 747.	1.7	17
62	Ovule siRNAs methylate protein-coding genes in trans. Plant Cell, 2022, 34, 3647-3664.	6.6	17
63	The maize gene empty pericarp-2 is required for progression beyond early stages of embryogenesis. Plant Journal, 1997, 12, 901-909.	5.7	16
64	qTeller: a tool for comparative multi-genomic gene expression analysis. Bioinformatics, 2021, 38, 236-242.	4.1	15
65	Evolution of Conserved Noncoding Sequences in <i>Arabidopsis thaliana</i> . Molecular Biology and Evolution, 2021, 38, 2692-2703.	8.9	14
66	Inna Golubovskaya: The Life of a Geneticist Studying Meiosis. Genetics, 2011, 188, 491-498.	2.9	13
67	Evidence of function for conserved noncoding sequences in <i>Arabidopsis thaliana</i> . New Phytologist, 2012, 193, 241-252.	7.3	13
68	The Fate of Arabidopsis thaliana Homeologous CNSs and Their Motifs in the Paleohexaploid Brassica rapa. Genome Biology and Evolution, 2013, 5, 646-660.	2.5	8
69	A cluster of transcripts identifies a transition stage initiating leafy head growth in heading morphotypes of <i>Brassica</i> . Plant Journal, 2022, 110, 688-706.	5.7	7
70	Maize (Zea Mays) as a Model for Studying the Impact of Gene and Regulatory Sequence Loss Following Whole-Genome Duplication. , 2012, , 137-145.		5
71	A Short Course on the Impact of Gene Duplications on the Evolution of Novelty. Advances in Botanical Research, 2014, 69, 335-361.	1.1	1
72	Regulatory changes as a consequence of transposon insertion. , 1999, 25, 291.		1

#	Article	IF	CITATIONS
73	Expression and distribution of cytosolic 6-phosphogluconate dehydrogenase isozymes in maize. Biochemical Genetics, 1992, 30, 233-246.	1.7	0