Martin Kamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5850620/publications.pdf

Version: 2024-02-01

		22153	25787
573	16,105	59	108
papers	citations	h-index	g-index
575	575	575	11300
575	575	575	113

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Statistical modeling of epitaxial thin films of an intrinsic antiferromagnetic topological insulator. Thin Solid Films, 2022, 750, 139183.	1.8	1
2	Antiferromagnetic order in MnBi2Te4 films grown on Si($1\hat{A}1\hat{A}1$) by molecular beam epitaxy. Journal of Crystal Growth, 2022, 591, 126677.	1.5	7
3	Understanding photoluminescence in semiconductor Bragg-reflection waveguides. Journal of Optics (United Kingdom), 2021, 23, 035801.	2.2	4
4	Purcell-Enhanced Single Photon Source Based on a Deterministically Placed WSe ₂ Monolayer Quantum Dot in a Circular Bragg Grating Cavity. Nano Letters, 2021, 21, 4715-4720.	9.1	36
5	Hard x-ray photoemission spectroscopy of LaVO3/SrTiO3 : Band alignment and electronic reconstruction. Physical Review B, 2021, 103, .	3.2	4
6	Correcting STEM distortions in atomically resolved elemental maps. Microscopy and Microanalysis, 2021, 27, 596-598.	0.4	0
7	Difference-frequency generation in an AlGaAs Bragg-reflection waveguide using an on-chip electrically-pumped quantum dot laser. Journal of Optics (United Kingdom), 2021, 23, 085802.	2.2	3
8	Experimental measurement of phase distributions in disordered systems. , 2021, , .		0
9	Molecular beam epitaxy of antiferromagnetic (MnBi2Te4)(Bi2Te3) thin films on BaF2 (111). Journal of Applied Physics, 2020, 128, .	2.5	23
10	Accurate photon echo timing by optical freezing of exciton dephasing and rephasing in quantum dots. Communications Physics, 2020, 3, .	5. 3	10
11	Electronic structure of epitaxial perovskite films in the two-dimensional limit: Role of the surface termination. Applied Physics Letters, 2020, 116, 201601.	3.3	2
12	Four-wave mixing dynamics of a strongly coupled quantum-dot–microcavity system driven by up to 20 photons. Physical Review B, 2020, 101, .	3.2	7
13	Incorporation of Europium in Bi ₂ Te ₃ Topological Insulator Epitaxial Films. Journal of Physical Chemistry C, 2020, 124, 16048-16057.	3.1	10
14	Picosecond pulses from a monolithic GaSb-based passive mode-locked laser. Applied Physics Letters, 2020, 116, .	3.3	7
15	Atomicâ€Scale Interface Structure in Domain Matching Epitaxial BaBiO 3 Thin Films Grown on SrTiO 3 Substrates. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000054.	2.4	7
16	Picosecond ultrasonics with miniaturized semiconductor lasers. Ultrasonics, 2020, 106, 106150.	3.9	6
17	Acoustic phonon sideband dynamics during polaron formation in a single quantum dot. Optics Letters, 2020, 45, 919.	3.3	16
18	Discrepant transport characteristics under Anderson localization at the two limits of disorder. Physical Review B, 2020, 102, .	3.2	2

#	Article	IF	Citations
19	Optical Thouless Conductance in Anderson Localizing Systems. , 2020, , .		О
20	Frequency comb investigation of monolithic modeâ€locked GaSbâ€based laser at 1.7 µm by heterodyne detection. Electronics Letters, 2020, 56, 1206-1208.	1.0	0
21	Molecular beam epitaxy of the half-Heusler antiferromagnet CuMnSb. Physical Review Materials, 2020, 4, .	2.4	5
22	Quantum Interference between Light Sources Separated by 150 Million Kilometers. Physical Review Letters, 2019, 123, 080401.	7.8	57
23	99% beta factor and directional coupling of quantum dots to fast light in photonic crystal waveguides determined by spectral imaging. Physical Review B, 2019, 100, .	3.2	26
24	Evanescently Coupled DBR Laser Arrays in the 760â \in "770 nm Wavelength Range. IEEE Photonics Technology Letters, 2019, 31, 1319-1322.	2.5	6
25	Photon-number parity of heralded single photons from a Bragg-reflection waveguide reconstructed loss-tolerantly via moment generating function. New Journal of Physics, 2019, 21, 103025.	2.9	3
26	Generalized Conductance Fluctuations in Anderson Localization at the two Limits of Disorder. , 2019, , .		0
27	Integrated Semiconductor Quantum Photonics. , 2019, , .		0
28	Optical Thouless conductance and level-spacing statistics in two-dimensional Anderson localizing systems. Physical Review B, 2019, 100, .	3.2	15
29	Two-kind boson mixture honeycomb Hamiltonian of Bloch exciton-polaritons. Physical Review B, 2019, 99, .	3.2	4
30	Optimizing the spectro-temporal properties of photon pairs from Bragg-reflection waveguides. Journal of Optics (United Kingdom), 2019, 21, 054001.	2.2	4
31	Efficient Quantum Photonic Phase Shift in a Low Q-Factor Regime. ACS Photonics, 2019, 6, 429-435.	6.6	14
32	Quantum dot spins in micropillar cavities. , 2019, , .		0
33	DFB Interband Cascade Laser Array for mid infrared spectroscopy. , 2019, , .		0
34	Anderson Localization in Nearly-periodic and Strongly Disordered Finite-supported Systems. , 2019, , .		0
35	Towards integrated quantum photonic circuits on GaAs. , 2019, , .		1
36	Domain matching epitaxy of BaBiO3 on SrTiO3 with structurally modified interface. Applied Physics Letters, 2018, 112, 141601.	3. 3	17

#	Article	IF	Citations
37	Photon Echo from an Ensemble of (In,Ga)As Quantum Dots. Semiconductors, 2018, 52, 531-534.	0.5	1
38	Controlled Growth of High-Aspect-Ratio Single-Crystalline Gold Platelets. Crystal Growth and Design, 2018, 18, 1297-1302.	3.0	42
39	Semi-automatic engineering and tailoring of high-efficiency Bragg-reflection waveguide samples for quantum photonic applications. Quantum Science and Technology, 2018, 3, 024002.	5.8	10
40	Enhanced Fluorescence Resonance Energy Transfer in G-Protein-Coupled Receptor Probes on Nanocoated Microscopy Coverslips. ACS Photonics, 2018, 5, 2225-2233.	6.6	7
41	Controlled Ordering of Topological Charges in an Exciton-Polariton Chain. Physical Review Letters, 2018, 121, 225302.	7.8	28
42	Controlling the gain contribution of background emitters in few-quantum-dot microlasers. New Journal of Physics, 2018, 20, 023036.	2.9	3
43	Double-waveguide interband cascade laser with dual-wavelength emission. Applied Physics Letters, 2018, 113, 251105.	3.3	0
44	Quantum-Optical Spectroscopy of a Two-Level System Using an Electrically Driven Micropillar Laser as Resonant Excitation Source. , 2018, , .		0
45	Sharpening emitter localization in front of a tuned mirror. Light: Science and Applications, 2018, 7, 99.	16.6	10
46	Studies of photon echo from exciton ensemble in (In,Ga)As quantum dots. Journal of Physics: Conference Series, 2018, 951, 012029.	0.4	1
47	Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback. Optics Express, 2018, 26, 22457.	3.4	17
48	Exploring the Photon-Number Distribution of Bimodal Microlasers with a Transition Edge Sensor. Physical Review Applied, 2018, 9, .	3.8	31
49	Optical tuning of the charge carrier type in the topological regime of InAs/GaSb quantum wells. Physical Review B, 2018, 98, .	3.2	7
50	A Biochemical Sensor Based on a Sensing Waveguide With Efficient Analyte Overlap and a Single-Mode DFB Laser. , 2018, 2, 1-3.		0
51	Invited Article: Time-bin entangled photon pairs from Bragg-reflection waveguides. APL Photonics, 2018, 3, 080804.	5.7	14
52	Boosting the Localization Precision in Super-Resolution Microscopy: booSTORM. Biophysical Journal, 2018, 114, 530a.	0.5	0
53	Live-cell fluorescence imaging with extreme background suppression by plasmonic nanocoatings. Optics Express, 2018, 26, 21301.	3.4	8
54	Toward Scalable Boson Sampling with Photon Loss. Physical Review Letters, 2018, 120, 230502.	7.8	97

#	Article	IF	Citations
55	High quality factor GaAs microcavity with buried bullseye defects. Physical Review Materials, 2018, 2, .	2.4	2
56	Mid-infrared detectors based on resonant tunneling diodes and interband cascade structures. , 2018, , .		1
57	Rabi oscillations of a quantum dot exciton coupled to acoustic phonons: coherence and population readout. Optica, 2018, 5, 1442.	9.3	19
58	Room temperature operation of GaSb-based resonant tunneling diodes by prewell injection. Applied Physics Letters, 2017, 110, .	3.3	12
59	Optimizing the active region of interband cascade lasers for passive mode-locking. AIP Advances, 2017, 7, .	1.3	7
60	Photon echoes from (In,Ga)As quantum dots embedded in a Tamm-plasmon microcavity. Physical Review B, 2017, 95, .	3.2	23
61	High-efficiency multiphoton boson sampling. Nature Photonics, 2017, 11, 361-365.	31.4	330
62	Laterally coupled DFB interband cascade laser with tapered ridge. Electronics Letters, 2017, 53, 743-744.	1.0	0
63	On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot. Nano Letters, 2017, 17, 4291-4296.	9.1	30
64	Associative learning with Y-shaped floating gate transistors operated in memristive modes. Applied Physics Letters, 2017, 110 , .	3.3	7
65	Electrically Tunable Single-Photon Source Triggered by a Monolithically Integrated Quantum Dot Microlaser. ACS Photonics, 2017, 4, 790-794.	6.6	31
66	Picosecond Control of Quantum Dot Laser Emission by Coherent Phonons. Physical Review Letters, 2017, 118, 133901.	7.8	23
67	Transition from Jaynes-Cummings to Autler-Townes ladder in a quantum dot–microcavity system. Physical Review B, 2017, 95, .	3.2	16
68	Nanoscale Tipping Bucket Effect in a Quantum Dot Transistor-Based Counter. Nano Letters, 2017, 17, 2273-2279.	9.1	5
69	Coherent coupling of individual quantum dots measured with phase-referenced two-dimensional spectroscopy: Photon echo versus double quantum coherence. Physical Review B, 2017, 96, .	3.2	16
70	Dynamics of the optical spin Hall effect. Physical Review B, 2017, 96, .	3. 2	6
71	Emission from quantum-dot high- \hat{l}^2 microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light: Science and Applications, 2017, 6, e17030-e17030.	16.6	79
72	Pump-Power-Driven Mode Switching in a Microcavity Device and Its Relation to Bose-Einstein Condensation. Physical Review X, 2017, 7, .	8.9	18

#	Article	IF	CITATIONS
73	Prototype of a bistable polariton field-effect transistor switch. Scientific Reports, 2017, 7, 5114.	3.3	10
74	Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin. Physical Review Letters, 2017, 119, 060501.	7.8	35
75	Exciton-polariton flows in cross-dimensional junctions. Physical Review B, 2017, 95, .	3.2	8
76	Strong light-matter coupling in the presence of lasing. Physical Review A, 2017, 96, .	2.5	20
77	Exploring coherence of individual excitons in InAs quantum dots embedded in natural photonic defects: Influence of the excitation intensity. Physical Review B, 2017, 96, .	3.2	9
78	Temperature tuning from direct to inverted bistable electroluminescence in resonant tunneling diodes. Journal of Applied Physics, 2017, 122, 154502.	2.5	12
79	Carrier transfer between confined and localized states in type II InAs/GaAsSb quantum wells. Optical and Quantum Electronics, 2017, 49, 1.	3.3	4
80	Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity. Physical Review Letters, 2017, 119, 027401.	7.8	33
81	Time-Bin-Encoded Boson Sampling with a Single-Photon Device. Physical Review Letters, 2017, 118, 190501.	7.8	123
82	Exciton-polariton trapping and potential landscape engineering. Reports on Progress in Physics, 2017, 80, 016503.	20.1	157
83	Circular and linear photogalvanic effects in type-II GaSb/InAs quantum well structures in the inverted regime. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 85, 193-198.	2.7	10
84	Dimensionality-Driven Metal-Insulator Transition in Spin-Orbit-Coupled <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nm[:8n>3	</td
85	Deterministic giant photon phase shift from a single charged quantum dot. , 2017, , .		O
86	High- \hat{l}^2 quantum dot-microlasers subject to time-delayed optical feedback. , 2017, , .		0
87	InGaAs quantum-dot micropillar emitters: From spontaneous emission and superradiance to lasing. , 2017, , .		0
88	Electrical tuning of the oscillator strength in type II InAs/GaInSb quantum wells for active region of passively mode-locked interband cascade lasers. Japanese Journal of Applied Physics, 2017, 56, 110301.	1.5	7
89	Optimizing single-mode collection from pointlike sources of single photons with adaptive optics. Optics Express, 2017, 25, 18629.	3.4	0
90	Acousto-optical nanoscopy of buried photonic nanostructures. Optica, 2017, 4, 588.	9.3	1

#	Article	IF	CITATIONS
91	On-chip optoelectronic feedback in a micropillar laser-detector assembly. Optica, 2017, 4, 303.	9.3	16
92	Temporally versatile polarization entanglement from Bragg reflection waveguides. Optics Letters, 2017, 42, 2102.	3.3	13
93	Efficient deterministic giant photon phase shift from a single charged quantum dot. , 2017, , .		0
94	Giant Photon Bunching and Quantum Correlations in Superradiant Quantum-Dot Microcavity Lasers. , 2017, , .		0
95	Synchronization of Mutually Coupled High- \hat{I}^2 Quantum Dot Microlasers. , 2017, , .		0
96	Mode switching in bimodal microcavities and its connection to Bose condensation. , 2017, , .		0
97	Antimonide-based resonant tunneling photodetectors for mid infrared wavelength light detection. , 2017, , .		0
98	Mid infrared DFB interband cascade lasers. , 2017, , .		16
99	Influence of carrier concentration on properties of InAs waveguide layers in interband cascade laser structures. Journal of Applied Physics, 2016, 120, .	2.5	2
100	Injection Locking of High-l ² Quantum Dot Microlasers. , 2016, , .		0
100	Injection Locking of High-β Quantum Dot Microlasers. , 2016, , . Microfiber-microcavity system for efficient single photon collection. Optics Express, 2016, 24, 23471.	3.4	4
		3.4 2.6	
101	Microfiber-microcavity system for efficient single photon collection. Optics Express, 2016, 24, 23471.		4
101	Microfiber-microcavity system for efficient single photon collection. Optics Express, 2016, 24, 23471. Half adder capabilities of a coupled quantum dot device. Nanotechnology, 2016, 27, 215201. Tailoring the photoluminescence polarization anisotropy of a single InAs quantum dash by a	2.6	0
101 102 103	Microfiber-microcavity system for efficient single photon collection. Optics Express, 2016, 24, 23471. Half adder capabilities of a coupled quantum dot device. Nanotechnology, 2016, 27, 215201. Tailoring the photoluminescence polarization anisotropy of a single InAs quantum dash by a post-growth modification of its dielectric environment. Journal of Applied Physics, 2016, 120, . Monolithic single mode interband cascade lasers with wide wavelength tunability. Applied Physics	2.6	4 O 8
101 102 103	Microfiber-microcavity system for efficient single photon collection. Optics Express, 2016, 24, 23471. Half adder capabilities of a coupled quantum dot device. Nanotechnology, 2016, 27, 215201. Tailoring the photoluminescence polarization anisotropy of a single InAs quantum dash by a post-growth modification of its dielectric environment. Journal of Applied Physics, 2016, 120, . Monolithic single mode interband cascade lasers with wide wavelength tunability. Applied Physics Letters, 2016, 109, . Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot	2.6 2.5 3.3	4 0 8 11
101 102 103 104	Microfiber-microcavity system for efficient single photon collection. Optics Express, 2016, 24, 23471. Half adder capabilities of a coupled quantum dot device. Nanotechnology, 2016, 27, 215201. Tailoring the photoluminescence polarization anisotropy of a single InAs quantum dash by a post-growth modification of its dielectric environment. Journal of Applied Physics, 2016, 120, . Monolithic single mode interband cascade lasers with wide wavelength tunability. Applied Physics Letters, 2016, 109, . Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers. Nature Communications, 2016, 7, 11540. Light sensitive memristor with bi-directional and wavelength-dependent conductance control.	2.6 2.5 3.3	4 0 8 11 120

#	Article	IF	Citations
109	Mimicking of pulse shape-dependent learning rules with a quantum dot memristor. Journal of Applied Physics, 2016, 120, .	2.5	6
110	Interband Cascade Lasers for gas sensing. , 2016, , .		0
111	Cost-effective tunable laser gas-sensor module for high-volume applications, using DFB laser diodes in the NIR, and ICL in the MIR. , 2016 , , .		1
112	Single-photon emission of InAs/InP quantum dashes at 1.55 <i>μ</i> m and temperatures up to 80 K. A Physics Letters, 2016, 108, .	pgligd	38
113	An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photonics, $2016,1,.$	5.7	60
114	Type-II quantum wells with tensile-strained GaAsSb layers for interband cascade lasers with tailored valence band mixing. Applied Physics Letters, 2016, 108, .	3.3	18
115	Efficient stray-light suppression for resonance fluorescence in quantum dot micropillars using self-aligned metal apertures. Semiconductor Science and Technology, 2016, 31, 095007.	2.0	4
116	Mode-switching induced super-thermal bunching in quantum-dot microlasers. New Journal of Physics, 2016, 18, 063011.	2.9	45
117	Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation. Nanotechnology, 2016, 27, 434003.	2.6	9
118	Photoluminescence quenching mechanisms in type II InAs/GalnSb QWs on InAs substrates. Optical and Quantum Electronics, 2016, 48, 1.	3.3	7
119	Sensitivity of resonant tunneling diode photodetectors. Nanotechnology, 2016, 27, 355202.	2.6	36
120	Talbot Effect for Exciton Polaritons. Physical Review Letters, 2016, 117, 097403.	7.8	29
121	Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Optics Express, 2016, 24, 8539.	3.4	143
122	Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard. Scientific Reports, 2016, 6, 37653.	3.3	9
123	GaAs integrated quantum photonics: Towards compact and multiâ€functional quantum photonic integrated circuits. Laser and Photonics Reviews, 2016, 10, 870-894.	8.7	165
124	Innovative mid-infrared detector concepts. , 2016, , .		7
125	Photoresponse of resonant tunneling diode photodetectors as a function of bias voltage. Proceedings of SPIE, 2016, , .	0.8	3
126	Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy. Optica, 2016, 3, 377.	9.3	34

#	Article	IF	Citations
127	Electro-Photo-Sensitive Memristor for Neuromorphic and Arithmetic Computing. Physical Review Applied, 2016, 5, .	3.8	37
128	Cavity-enhanced simultaneous dressing of quantum dot exciton and biexciton states. Physical Review B, 2016, 93, .	3.2	36
129	Collective state transitions of exciton-polaritons loaded into a periodic potential. Physical Review B, 2016, 93, .	3.2	45
130	Photon echo transients from an inhomogeneous ensemble of semiconductor quantum dots. Physical Review B, 2016, 93, .	3.2	28
131	Impact of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="italic">ex</mml:mi><mml:mspace width="0.28em"></mml:mspace><mml:mi mathvariant="italic">situ</mml:mi></mml:math> rapid thermal annealing on magneto-optical properties and oscillator strength of In(Ga)As quantum dots. Physical Review B, 2016, 93.	3.2	6
132	Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Physical Review B, 2016, 93, .	3.2	63
133	Experimental realization of a polariton beam amplifier. Physical Review B, 2016, 93, .	3.2	16
134	Photon-statistics excitation spectroscopy of a single two-level system. Physical Review B, 2016, 93, .	3.2	7
135	Charged quantum dot micropillar system for deterministic light-matter interactions. Physical Review B, 2016, 93, .	3.2	45
136	On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. Physical Review Letters, 2016, 116, 020401.	7.8	675
137	Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter. Physical Review Letters, 2016, 116, 213601.	7.8	150
138	Coherent Polariton Laser. Physical Review X, 2016, 6, .	8.9	47
139	Observation of the Transition from Lasing Driven by a Bosonic to a Fermionic Reservoir in a GaAs Quantum Well Microcavity. Physical Review Letters, 2016, 117, 127401.	7.8	6
140	Injection Locking of Quantum-Dot Microlasers Operating in the Few-Photon Regime. Physical Review Applied, 2016, 6, .	3.8	18
141	Strategies for bright single photon sources in solid state: Coupled quantum dot cavities and monolayer-based systems. , 2016, , .		0
142	Novel mono mode interband cascade laser sources for challenging TLAS applications in the MIR. , 2016, , .		0
143	Lasing in Bose-Fermi mixtures. Scientific Reports, 2016, 6, 20091.	3.3	21
144	Probing different regimes of strong field light–matter interaction with semiconductor quantum dots and few cavity photons. New Journal of Physics, 2016, 18, 123031.	2.9	9

#	Article	IF	Citations
145	Mid-infrared interband cascade lasers. , 2016, , .		O
146	Single-mode interband cascade laser sources for mid-infrared spectroscopic applications. Proceedings of SPIE, 2016, , .	0.8	5
147	Quantum dot micropillar cavities with quality factors exceeding 250,000. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	46
148	Simple Electrical Modulation Scheme for Laser Feedback Imaging. IEEE Sensors Journal, 2016, 16, 1937-1942.	4.7	20
149	Effect of Dielectric Medium Anisotropy on the Polarization Degree of Emission from a Single Quantum Dash. Acta Physica Polonica A, 2016, 129, A-48-A-52.	0.5	2
150	Multi-wave coherent control of a solid-state single emitter. Nature Photonics, 2016, 10, 155-158.	31.4	34
151	Interband cascade laser sources in the mid-infrared for green photonics. Proceedings of SPIE, 2016, , .	0.8	0
152	Room Temperature Carrier Kinetics in the W-type GalnAsSb/InAs/AlSb Quantum Well Structure Emitting in Mid-Infrared Spectral Range. Acta Physica Polonica A, 2016, 130, 1224-1228.	0.5	6
153	Controlling the Biexciton-Exciton Cascade Kinetics in a Quantum Dot via Coupling to a Microcavity Optical Mode. Acta Physica Polonica A, 2016, 129, A-44-A-47.	0.5	1
154	Efficient Single Photon Collection based on Phased-Matched Microfiber-Microcavity Coupling. , 2016, , .		0
155	Interband Cascade Lasers in the MIR for Sensing Applications. , 2016, , .		0
156	Quantum-shot-noise-driven optical antennas. , 2016, , .		0
157	Talbot effect for exciton-polaritons. , 2016, , .		0
158	Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot. Optica, 2015, 2, 1072.	9.3	22
159	Deterministic generation of bright single resonance fluorescence photons from a Purcell-enhanced quantum dot-micropillar system. Optics Express, 2015, 23, 32977.	3.4	22
160	Logical Stochastic Resonance with a Coulomb-Coupled Quantum-Dot Rectifier. Physical Review Applied, 2015, 4, .	3.8	45
161	Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter. Physical Review B, $2015, 91, .$	3.2	30
162	Transient optical parametric oscillations in resonantly pumped multistable cavity polariton condensates. Physical Review B, $2015, 92, .$	3.2	5

#	Article	IF	CITATIONS
163	Surface-interface coupling in an oxide heterostructure: Impact of adsorbates on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>LaAlO</mml:mi><mp>Physical Review B, 2015, 92, .</mp></mml:msub></mml:mrow></mml:math>	ıml: នា മ>3<	 m #1 2mn>< n
164	Compensation of phonon-induced renormalization of vacuum Rabi splitting in large quantum dots: Towards temperature-stable strong coupling in the solid state with quantum dot-micropillars. Physical Review B, 2015, 92, .	3.2	10
165	Ghost Branch Photoluminescence From a Polariton Fluid Under Nonresonant Excitation. Physical Review Letters, 2015, 115, 186401.	7.8	26
166	Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs. Physical Review B, 2015, 92, .	3.2	36
167	Publisher's Note: Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers [Phys. Rev. A 91 , 043840 (2015)]. Physical Review A, 2015, 91, .	2.5	0
168	All-optical flow control of a polariton condensate using nonresonant excitation. Physical Review B, 2015, 91, .	3.2	48
169	Photon-Statistics Excitation Spectroscopy of a Quantum-Dot Micropillar Laser. Physical Review Letters, 2015, 115, 027401.	7.8	18
170	Efficient single photon source based on $\hat{l}\frac{1}{4}$ -fibre-coupled tunable microcavity. Scientific Reports, 2015, 5, 14309.	3.3	25
171	Direct fiber-coupled single photon source based on a photonic crystal waveguide. Applied Physics Letters, 2015, 107, .	3.3	8
172	InAs-based distributed feedback interband cascade lasers. Applied Physics Letters, 2015, 107, 181105.	3.3	9
173	Efficient single photon collection using tunable microfiber-coupled photonic crystal cavity. , 2015, , .		0
174	Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide. Journal of Optics (United Kingdom), 2015, 17, 125201.	2.2	19
175	Optical bistability in electrically driven polariton condensates. Physical Review B, 2015, 91, .	3.2	30
176	Enhanced single photon emission from positioned $InP/GaInP$ quantum dots coupled to a confined Tamm-plasmon mode. Applied Physics Letters, 2015, 106, .	3.3	29
177	Memristive operation mode of a site-controlled quantum dot floating gate transistor. Applied Physics Letters, 2015, 106, .	3.3	16
178	Nanothermometer Based on Resonant Tunneling Diodes: From Cryogenic to Room Temperatures. ACS Nano, 2015, 9, 6271-6277.	14.6	23
179	An electrically pumped polariton laser. , 2015, , .		1
180	Submonolayer Uniformity of Type II InAs/GaInSb W-shaped Quantum Wells Probed by Full-Wafer Photoluminescence Mapping in the Mid-infrared Spectral Range. Nanoscale Research Letters, 2015, 10, 402.	5.7	7

#	Article	lF	Citations
181	Interface Intermixing in Type II InAs/GalnAsSb Quantum Wells Designed for Active Regions of Mid-Infrared-Emitting Interband Cascade Lasers. Nanoscale Research Letters, 2015, 10, 471.	5.7	9
182	Adjusting the conductivity of GaInNAs solar cells from p- to n-type with the As/III ratio. , 2015, , .		0
183	Mode-resolved Fabry-Perot experiment in low-loss Bragg-reflection waveguides. Optics Express, 2015, 23, 33608.	3.4	13
184	Sub-kT Switching in Asymmetric Y-Transistors With Internal Feedback Coupling. IEEE Journal of the Electron Devices Society, 2015, 3, 158-163.	2.1	2
185	A polariton condensate in a photonic crystal potential landscape. New Journal of Physics, 2015, 17, 023001.	2.9	58
186	Impact of nanomechanical resonances on lasing from electrically pumped quantum dot micropillars. Applied Physics Letters, 2015, 106, .	3.3	11
187	Photocurrent readout and electro-optical tuning of resonantly excited exciton polaritons in a trap. Physical Review B, 2015, 91, .	3.2	4
188	Dynamically Controlled Resonance Fluorescence Spectra from a Doubly Dressed Single InGaAs Quantum Dot. Physical Review Letters, 2015, 114, 097402.	7.8	47
189	Quantumâ€dotâ€based integrated nonâ€linear sources. IET Optoelectronics, 2015, 9, 82-87.	3.3	0
190	Correlations between axial and lateral emission of coupled quantum dot–micropillar cavities. Physical Review B, 2015, 91, .	3.2	13
191	Electronic tuneability of a structurally rigid surface intermetallic and Kondo lattice: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CePt</mml:mi><mml:mn>5</mml:mn></mml:msub><mml:mo>/</mml:mo>/<mml:mi>Pt, 2015, 92, .</mml:mi></mml:math>	:/m iii l:mi>	<mml:mo>(<</mml:mo>
192	Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures. Applied Physics Letters, 2015, 106, .	3.3	7
193	Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers. Physical Review A, 2015, 91, .	2.5	13
194	Coupling polariton quantum boxes in sub-wavelength grating microcavities. Applied Physics Letters, 2015, 106, .	3.3	22
195	Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots. Physical Review Letters, 2015, 114, 146805.	7.8	113
196	Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling. Nanoscale Research Letters, 2015, 10, 114.	5.7	6
197	A Pulsed Nonclassical Light Source Driven by an Integrated Electrically Triggered Quantum Dot Microlaser. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 681-689.	2.9	17
198	Interband cascade lasers. Journal Physics D: Applied Physics, 2015, 48, 123001.	2.8	222

#	Article	IF	CITATIONS
199	Fabrication of quantum dot and cavity nanostructures. , 2015, , .		0
200	Quantum dot photonic crystal circuits., 2015,,.		0
201	Coherent control and angular momentum transfer in semiconductor and plasmonic nanostructures. , 2015, , .		0
202	Cavity-enhanced AlGaAs/GaAs resonant tunneling photodetectors for telecommunication wavelength light detection at 1.3 \hat{l} 4m., 2015, , .		6
203	InAs-based interband-cascade-lasers emitting around $7\hat{a}\in \infty < i>\hat{l}^1/4 < /i> m with threshold current densities below 1\hat{a}\in \infty kA/cm2 at room temperature. Applied Physics Letters, 2015, 106, .$	3.3	37
204	p- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio. Applied Physics Letters, 2015, 106, .	3.3	12
205	Single-mode interband cascade lasers emitting below 2.8 <i>μ</i> m. Applied Physics Letters, 2015, 106, .	3.3	33
206	Graded band gap GalnNAs solar cells. Applied Physics Letters, 2015, 106, 233902.	3.3	7
207	On the modified active region design of interband cascade lasers. Journal of Applied Physics, 2015, 117, 084312.	2.5	5
208	Distributed feedback interband cascade lasers for applications in research and industry. Proceedings of SPIE, 2015, , .	0.8	1
209	Widely-tunable interband cascade lasers for the mid-infrared. , 2015, , .		2
210	A Coherent Polariton Lasers. , 2015, , .		0
211	Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 2015, 526, 554-558.	27.8	422
212	Mid-infrared (~2.8 μm to ~7.1 μm) interband cascade lasers. Proceedings of SPIE, 2015, , .	0.8	1
213	Photocurrent-voltage relation of resonant tunneling diode photodetectors. Applied Physics Letters, 2015, 107, .	3.3	26
214	Electrically driven optical antennas. Nature Photonics, 2015, 9, 582-586.	31.4	236
215	Impact of lateral carrier confinement on electro-optical tuning properties of polariton condensates. Applied Physics Letters, 2015, 107, 041108.	3.3	6
216	Dynamics of spatial coherence and momentum distribution of polaritons in a semiconductor microcavity under conditions of Bose-Einstein condensation. JETP Letters, 2015, 101, 513-518.	1.4	6

#	Article	IF	Citations
217	Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits. Nature Communications, 2015, 6, 8955.	12.8	31
218	Waveguide Nanowire Superconducting Single-Photon Detectors Fabricated on GaAs and the Study of Their Optical Properties. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-10.	2.9	188
219	Single Semiconductor Quantum Dots in Microcavities: Bright Sources of Indistinguishable Photons. Nano-optics and Nanophotonics, 2015, , 343-361.	0.2	3
220	Background-free Quantum Frequency Downconversion for Two-photon Interference of Heterogeneous Photon Sources., 2015,,.		0
221	Polariton Condensates in Complex Potential Landscapes. , 2015, , .		0
222	Highly indistinguishable photons from a QD-microcavity with a large Purcell-factor. , 2015, , .		0
223	Macroscopic Kerr Rotation from a Bright Negatively Charged Quantum Dot in a Low-Q Micropillar Cavity. , 2015, , .		0
224	Interband Cascade Laser Based Sensing. , 2015, , .		0
225	Optical Bistability in Electrically Driven Polariton Condensates. , 2015, , .		0
226	Temperature dependency of the emission properties from positioned $\ln(Ga)As/GaAs$ quantum dots. AIP Advances, 2014, 4, .	1.3	9
227	Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity. Light: Science and Applications, 2014, 3, e135-e135.	16.6	75
228	Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principle experiment. New Journal of Physics, 2014, 16, 043003.	2.9	41
229	Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an exciton-polariton gas. Physical Review B, 2014, 90, .	3.2	53
230	Nonlinear route to intrinsic Josephson oscillations in spinor cavity-polariton condensates. Physical Review B, 2014, 90, .	3.2	25
231	Bright quantum dot single photon source based on a low Q defect cavity. , 2014, , .		0
232	Free Space Quantum Key Distribution over 500 Meters using Electrically Triggered Quantum Dot Single-Photon Sources. , 2014, , .		0
233	Distributed feedback interband cascade lasers for spectroscopy from 3-6 μm. Proceedings of SPIE, 2014, , .	0.8	1
234	Semiconductor Exciton-Polariton Lasers. , 2014, , .		0

#	Article	IF	Citations
235	On-chip quantum optics with integrated electrically driven microlasers. , 2014, , .		O
236	Single-mode Polariton Laser in a Designable Microcavity. , 2014, , .		0
237	Influence of interactions with non-condensed particles on the coherence of a 1D polariton condensate., 2014,,.		0
238	Polariton Laser Diodes. , 2014, , .		0
239	Bright single photon source based on self-aligned quantum dot–cavity systems. Optics Express, 2014, 22, 8136.	3.4	46
240	Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity. Optics Express, 2014, 22, 31146.	3.4	20
241	Temperature-Dependent Mollow Triplet Spectra from a Single Quantum Dot: Rabi Frequency Renormalization and Sideband Linewidth Insensitivity. Physical Review Letters, 2014, 113, 097401.	7.8	48
242	Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths. Physical Review B, 2014, 89, .	3.2	56
243	Magneto-exciton-polariton condensation in a sub-wavelength high contrast grating based vertical microcavity. Applied Physics Letters, 2014, 104, 091117.	3.3	5
244	Charging dynamics of a floating gate transistor with site-controlled quantum dots. Applied Physics Letters, 2014, 105, 053502.	3.3	8
245	Low dimensional GaAs/air vertical microcavity lasers. Applied Physics Letters, 2014, 104, 081113.	3.3	3
246	(In,Ga)As/GaP electrical injection quantum dot laser. Applied Physics Letters, 2014, 104, 011113.	3.3	14
247	Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths. Applied Physics Letters, 2014, 104, 101109.	3.3	32
248	Influence of interactions with noncondensed particles on the coherence of a one-dimensional polariton condensate. Physical Review B, 2014, 89, .	3.2	21
249	Single mode interband cascade lasers based on lateral metal gratings. Applied Physics Letters, 2014, 105, .	3.3	37
250	Single photon emission of a charge-tunable GaAs/Al0.25Ga0.75As droplet quantum dot device. Applied Physics Letters, 2014, 105, 081111.	3.3	6
251	Spatial Coherence Properties of One Dimensional Exciton-Polariton Condensates. Physical Review Letters, 2014, 113, 203902.	7.8	39
252	Toward weak confinement regime in epitaxial nanostructures: Interdependence of spatial character of quantum confinement and wave function extension in large and elongated quantum dots. Physical Review B, 2014, 90, .	3.2	16

#	Article	IF	Citations
253	Molecular beam epitaxial growth of Bi2Se3 nanowires and nanoflakes. Applied Physics Letters, 2014, 105, .	3.3	7
254	Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash. Applied Physics Letters, 2014, 105, 021909.	3.3	43
255	Electro optical tuning of Tamm-plasmon exciton-polaritons. Applied Physics Letters, 2014, 105, 181107.	3.3	40
256	Interband cascade lasers for the mid-infrared spectral region. , 2014, , .		3
257	Optical characterization of type II quantum wells for long-wavelength mid-infrared interband cascade lasers. Proceedings of SPIE, 2014, , .	0.8	0
258	Exciton-polariton laser diodes. , 2014, , .		2
259	Strain-driven growth of GaAs(111) quantum dots with low fine structure splitting. Applied Physics Letters, 2014, 105 , .	3.3	33
260	Gallium arsenide (GaAs) quantum photonic waveguide circuits. Optics Communications, 2014, 327, 49-55.	2.1	98
261	Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength. Semiconductor Science and Technology, 2014, 29, 052001.	2.0	9
262	AlGalnAs Quantum Dots for Intermediate Band Formation in Solar Cell Devices. Lecture Notes in Nanoscale Science and Technology, 2014, , 167-186.	0.8	1
263	Circularly polarized light emission from chiral spatially-structured planar semiconductor microcavities. Physical Review B, 2014, 89, .	3.2	54
264	Creation of Orbital Angular Momentum States with Chiral Polaritonic Lenses. Physical Review Letters, 2014, 113, 200404.	7.8	89
265	Deterministic and Robust Generation of Single Photons from a Single Quantum Dot with 99.5% Indistinguishability Using Adiabatic Rapid Passage. Nano Letters, 2014, 14, 6515-6519.	9.1	129
266	Monomode Interband Cascade Lasers at 5.2 \$mu{m m}\$ for Nitric Oxide Sensing. IEEE Photonics Technology Letters, 2014, 26, 480-482.	2.5	44
267	From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size. Journal Physics D: Applied Physics, 2014, 47, 265001.	2.8	20
268	Nonlinear spectroscopy of exciton-polaritons in a GaAs-based microcavity. Physical Review B, 2014, 90,	3.2	17
269	Lasing from active optomechanical resonators. Nature Communications, 2014, 5, 4038.	12.8	37
270	Anomalies of a Nonequilibrium Spinor Polariton Condensate in a Magnetic Field. Physical Review Letters, 2014, 112, 093902.	7.8	38

#	Article	lF	Citations
271	Photon-number-resolving detectors integrated in GaAs waveguide. , 2014, , .		0
272	Analysis of Single Photon Micropillar Optical Switch using Semi-Analytical Model. , 2014, , .		0
273	Controlled Lasing from Active Optomechanical Resonators. , 2014, , .		0
274	A detailed study of self-assembled (Al,Ga)InP quantum dots grown by molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2601-2610.	1.8	0
275	Distributed Feedback Interband Cascade Lasers and their Spectroscopic Applications in Gas Sensing. , 2014, , .		4
276	Two Photon Interference from Semiconductor Quantum Dots. , 2014, , .		0
277	Towards quantum computing and quantum networking with solid-state single spins and single photons. , 2014, , .		0
278	Distributed Feedback Interband Cascade Laser at 3550 nm for Formaldehyde Measurements. , 2014, , .		0
279	Coherence Properties of a Single-Mode Polariton Laser. , 2014, , .		0
280	Complete tomography of a high-fidelity solid-state entangled spin–photon qubit pair. Nature Communications, 2013, 4, 2228.	12.8	31
281	Single spins in semiconductor quantum dot microcavities. , 2013, , .		0
282	Indistinguishable Tunable Single Photons Emitted by Spin-Flip Raman Transitions in InGaAs Quantum Dots. Physical Review Letters, 2013, 111, 237403.	7.8	60
283	Superconducting nanowire single-photon detectors integrated with waveguide circuits for quantum information science. Proceedings of SPIE, 2013, , .	0.8	0
284	Electrically driven exciton-polariton lasers. , 2013, , .		0
285	Magnetic-field interaction of spatially confined quantum-well exciton-polaritons. Journal of Physics: Conference Series, 2013, 456, 012033.	0.4	5
286	Unconventional Growth Mechanism for Monolithic Integration of III–V on Silicon. ACS Nano, 2013, 7, 100-107.	14.6	53
287	On-demand semiconductor single-photon source with near-unity indistinguishability. Nature Nanotechnology, 2013, 8, 213-217.	31.5	444
288	Determination of operating parameters for a GaAs-based polariton laser. Applied Physics Letters, 2013, 102, .	3.3	9

#	Article	IF	CITATIONS
289	Nonlinear emission characteristics of quantum dot–micropillar lasers in the presence of polarized optical feedback. New Journal of Physics, 2013, 15, 025030.	2.9	15
290	Electroluminescence from spatially confined exciton polaritons in a textured microcavity. Applied Physics Letters, $2013,102,.$	3.3	16
291	Coherence Expansion and Polariton Condensate Formation in a Semiconductor Microcavity. Physical Review Letters, 2013, 110, 137402.	7.8	26
292	Interband cascade lasers with room temperature threshold current densities below 100 A/cm2. Applied Physics Letters, 2013, 102, .	3.3	72
293	Microring Diode Laser for THz Generation. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 472-478.	3.1	1
294	An electrically pumped polariton laser. Nature, 2013, 497, 348-352.	27.8	420
295	Microcavity controlled coupling of excitonic qubits. Nature Communications, 2013, 4, 1747.	12.8	49
296	Quantum integrated photonics on GaAs., 2013,,.		0
297	Extending the direct laser modulation bandwidth by exploiting the photon-photon resonance: modeling, simulations and experiments. , 2013, , .		O
298	Diamagnetic shift and second order coherence for polariton lasing in subwavelength grating based microcavity. , 2013, , .		0
299	Integrated autocorrelator based on superconducting nanowires. Optics Express, 2013, 21, 11162.	3.4	21
300	On-Chip Quantum Optics using Electrically Driven Quantum Dot - Micropillar Cavities. , 2013, , .		0
301	DFB interband cascade lasers for tunable laser absorption spectroscopy from 3 to 6 \hat{l} 4m. Proceedings of SPIE, 2013, , .	0.8	7
302	Room temperature polariton light emitting diode with integrated tunnel junction. Optics Express, 2013, 21, 31098.	3.4	10
303	Interband cascade lasers with AlGaAsSb bulk cladding layers. Optical Materials Express, 2013, 3, 1624.	3.0	23
304	Properties of InGaAlAs/AlGaAs quantum dots for single photon emission in the near infrared and visible spectral range. , 2013, , .		0
305	Roomâ€temperature operation of InAsâ€based interbandâ€cascadeâ€lasers beyond 6 µm. Electronics Letters, 2013, 49, 286-287.	1.0	17
306	Low threshold interband cascade lasers. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	Citations
307	Anisotropic strain-tuning of quantum dots inside a photonic crystal cavity. Semiconductor Science and Technology, 2013, 28, 122002.	2.0	9
308	Exciton-polariton lasers in Magnetic Fields. , 2013, , .		2
309	Mode selection in electrically driven quantum dot microring cavities. Optics Express, 2013, 21, 15951.	3.4	25
310	On-chip quantum optics with electrically driven quantum dot micropillar cavities., 2013,,.		0
311	High beta lasing in micropillar cavities with adiabatic layer design. Applied Physics Letters, 2013, 102, 052114.	3.3	20
312	Waveguide photon-number-resolving detectors for quantum photonic integrated circuits. Applied Physics Letters, 2013, 103, .	3.3	66
313	Free space quantum key distribution over 500 meters using electrically driven quantum dot single photon sources. , 2013, , .		0
314	Spin and density patterns of polariton condensates resonantly excited in strained planar microcavities with a nonuniform potential landscape. Physical Review B, 2013, 88, .	3.2	21
315	Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells: Spectroscopic experiment versus 10-band k·p modeling. Journal of Applied Physics, 2013, 113, 233508.	2.5	10
316	Demonstration of the self-mixing effect in interband cascade lasers. Applied Physics Letters, 2013, 103, .	3.3	17
317	Single-photon and photon-number-resolving detectors integrated with waveguide circuits. , 2013, , .		0
318	Parametric polariton scattering in quantum wires and coupled planar microcavities., 2013,,.		0
319	Polariton multistability and fast linear-to-circular polarization conversion in planar microcavities with lowered symmetry. Applied Physics Letters, 2013, 102, 011104.	3.3	41
320	Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots. Physical Review B, 2013, 87, .	3.2	21
321	Cascaded emission of linearly polarized single photons from positioned InP/GaInP quantum dots. Applied Physics Letters, 2013, 103, 191113.	3.3	7
322	Spin multistability of cavity polaritons in a magnetic field. Physical Review B, 2013, 87, .	3.2	27
323	Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition. Physical Review A, 2013, 87, .	2.5	51
324	Effect of arsenic on the optical properties of GaSb-based type II quantum wells with quaternary GaInAsSb layers. Journal of Applied Physics, 2013, 114, .	2.5	16

#	Article	IF	Citations
325	Onâ€Chip Quantum Optics with Quantum Dot Microcavities. Advanced Materials, 2013, 25, 707-710.	21.0	54
326	Coherence dynamics and quantum-to-classical crossover in an exciton–cavity system in the quantum strong coupling regime. New Journal of Physics, 2013, 15, 045013.	2.9	11
327	Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments. Proceedings of SPIE, 2013, , .	0.8	0
328	High-Speed Directly-Modulated Lasers with Photon-Photon Resonance. , 2013, , .		1
329	Ultrafast optical control of individual electron and hole spin qubits: entanglement between a single quantum dot electron spin and a downconverted 1560-nm single photon. Proceedings of SPIE, 2013, , .	0.8	0
330	Quantum-dot micropillars for parametric THz emission. Proceedings of SPIE, 2013, , .	0.8	0
331	Waveguide superconducting single-photon autocorrelators for quantum photonic applications. Proceedings of SPIE, 2013, , .	0.8	2
332	An electrically driven polariton laser. , 2013, , .		1
333	Interband Cascade Lasers with External Differential Quantum Efficiency $>50\%$ at Room Temperature. , 2013, , .		0
334	Ultrafast downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. , 2013, , .		0
335	Polariton lasing in a zero dimensional hybrid photonic crystal cavity. , 2013, , .		0
336	Temperature dependence of pulsed polariton lasing in a GaAs microcavity. New Journal of Physics, 2012, 14, 083014.	2.9	13
337	Density and size control of InP/GaInP quantum dots on GaAs substrate grown by gas source molecular beam epitaxy. Nanotechnology, 2012, 23, 015605.	2.6	21
338	Microcavity enhanced single photon emission from an electrically driven site-controlled quantum dot. Applied Physics Letters, 2012, 100 , .	3.3	47
339	Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths. Optics Express, 2012, 20, 21758.	3.4	32
340	Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Optics Express, 2012, 20, 27510.	3 . 4	57
341	Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector. Optics Express, 2012, 20, 3890.	3.4	24
342	Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots. Applied Physics Letters, 2012, 101, .	3.3	30

#	Article	IF	Citations
343	Increasing the optical transition oscillator strength in GaSb-based type II quantum wells. Applied Physics Letters, 2012, 100, .	3.3	12
344	Directional whispering gallery mode emission from Lima \tilde{A} on-shaped electrically pumped quantum dot micropillar lasers. Applied Physics Letters, 2012, 101, .	3.3	49
345	Magnetic field control of polarized polariton condensates in rectangular microcavity pillars. Physical Review B, 2012, 85, .	3.2	14
346	Single photon emission in the red spectral range from a GaAs-based self-assembled quantum dot. Applied Physics Letters, 2012, 101, 103108.	3.3	8
347	Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. Applied Physics Letters, 2012, 100, .	3.3	41
348	All-optical control of quantized momenta on a polariton staircase. Physical Review B, 2012, 85, .	3.2	27
349	Bloch-Wave Engineering of Quantum Dot Micropillars for Cavity Quantum Electrodynamics Experiments. Physical Review Letters, 2012, 108, 057402.	7.8	63
350	Towards intermediate-band formation in solar cells with AlGaInAs quantum dots. , 2012, , .		0
351	On the mechanisms of energy transfer between quantum well and quantum dashes. Journal of Applied Physics, 2012, 112, 033520.	2.5	6
352	AlGalnAs quantum dot solar cells: tailoring quantum dots for intermediate band formation. Semiconductor Science and Technology, 2012, 27, 032002.	2.0	8
353	Single photon sources for quantum information applications. , 2012, , .		0
354	Detecting Single Photons Using Superconducting Nanowires. , 2012, , .		0
355	Room temperature continuous wave interband cascade lasers for gas sensing. Proceedings of SPIE, 2012, , .	0.8	5
356	Quantum dot microlasers with external feedback: a chaotic system close to the quantum limit. Proceedings of SPIE, 2012, , .	0.8	0
357	Spatial dynamics of stepwise homogeneously pumped polariton condensates. Physical Review B, 2012, 86, .	3.2	8
358	Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature, 2012, 491, 421-425.	27.8	423
359	Coherence signatures and density-dependent interaction in a dynamical exciton-polariton condensate. Physical Review B, 2012, 86, .	3.2	24
360	Site-controlled growth of InP/InGaP quantum dots. , 2012, , .		0

#	Article	IF	CITATIONS
361	Site-controlled InP/GaInP quantum dots emitting single photons in the red spectral range. Applied Physics Letters, 2012, 100, .	3.3	17
362	Quantum integrated photonics on GaAs. , 2012, , .		1
363	Distributed feedback lasers with photon-photon-resonance-enhanced modulation bandwidth. , 2012, , .		5
364	Quantum dot $\hat{a} \in$ "Microlasers with external feedback $\hat{a} \in$ "A chaotic system close to the quantum limit. , 2012, , .		0
365	Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes. , 2012, , .		O
366	Site-controlled growth of InP/GaInP quantum dots on GaAs substrates. Nanotechnology, 2012, 23, 375301.	2.6	7
367	Single quantum dot photocurrent spectroscopy in the cavity quantum electrodynamics regime. Physical Review B, 2012, 86, .	3.2	4
368	In(Ga)As/GaAs siteâ€controlled quantum dots with tailored morphology and high optical quality. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2379-2386.	1.8	19
369	Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New Journal of Physics, 2012, 14, 083001.	2.9	80
370	Atomic-Scale Confinement of Resonant Optical Fields. Nano Letters, 2012, 12, 5504-5509.	9.1	129
371	On the oscillator strength in dilute nitride quantum wells on GaAs. Journal of Applied Physics, 2012, 111, .	2.5	8
372	Interband cascade lasers for sensing operating in continuous wave mode at room temperature. Proceedings of SPIE, 2012 , , .	0.8	1
373	Characterization of GaAs/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer as 1.3 \hat{l} 4m photo sensors. , 2012, , .		1
374	GaAs/AlGaAs resonant tunneling diodes with a GalnNAs absorption layer for telecommunication light sensing. Applied Physics Letters, 2012, 100, 172113.	3.3	32
375	Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Applied Physics Letters, 2012, 100, 061122.	3.3	50
376	Electrically Connected Resonant Optical Antennas. Nano Letters, 2012, 12, 3915-3919.	9.1	76
377	LIMITLESS RANGE QUANTUM COMMUNICATIONS: STEPS TOWARDS A SOLID STATE QUANTUM REPEATER. , 2012, , .		0
378	Design, fabrication and characterization of photonic crystal based taper. , 2011, , .		O

#	Article	IF	Citations
379	Bloch-wave engineered submicron diameter micropillars with quality factors exceeding 10,000. , 2011, , .		O
380	Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Physical Review B, 2011, 84, .	3.2	39
381	Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Physics, 2011, 7, 872-878.	16.7	205
382	Influence of GaSb and AlGaInAsSb as Barrier Material on <formula formulatype="inline"><tex notation="TeX">\$sim\$</tex></formula> 2.8- <formula formulatype="inline"><tex notation="TeX">\$mu\$</tex></formula> m GaSb-Based Diode Laser Properties. IEEE Photonics Technology Letters, 2011, 23, 371-373.	2.5	4
383	Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Applied Physics Letters, 2011, 99, .	3.3	251
384	Observing chaos for quantum-dot microlasers with external feedback. Nature Communications, 2011, 2, 366.	12.8	68
385	Effect of Coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities. Physical Review B, $2011, 84, .$	3.2	41
386	Surface structure, morphology, and growth mechanism of Fe3O4/ZnO thin films. Journal of Applied Physics, 2011, 110, .	2.5	6
387	Single photons emitted by single quantum dots into waveguides: photon guns on a chip. , 2011, , .		1
388	Near-infrared semiconductor-nanostructured light detectors. , 2011, , .		0
389	Nuclear feedback in a single electron-charged quantum dot under pulsed optical control. , 2011, , .		0
390	Cavity quantum electrodynamics studies with site-controlled InGaAs quantum dots integrated into high quality microcavities. , $2011, , .$		1
391	Electrically Driven Quantum Dot Micropillar Light Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1670-1680.	2.9	17
392	Narrow spectral linewidth from single site-controlled $\ln(Ga)$ As quantum dots with high uniformity. Applied Physics Letters, 2011, 98, .	3.3	61
393	Above GaSb barrier in type II quantum well structures for mid-infrared emission detected by Fourier-transformed modulated reflectivity. Opto-electronics Review, 2011, 19, .	2.4	2
394	Optimization and comparison of depth profiling in GaAs and GaSb with TOFâ€SIMS. Surface and Interface Analysis, 2011, 43, 673-675.	1.8	4
395	Site-controlled In(Ga)As/GaAs quantum dots for integration into optically and electrically operated devices. Journal of Crystal Growth, 2011, 323, 194-197.	1.5	13
396	Mid-infrared semiconductor heterostructure lasers for gas sensing applications. Semiconductor Science and Technology, 2011, 26, 014032.	2.0	58

#	Article	IF	Citations
397	1100 nm InGaAs/(Al)GaAs quantum dot lasers for high-power applications. Journal Physics D: Applied Physics, 2011, 44, 145104.	2.8	6
398	Plasmonic modes of strongly-coupled single-crystalline gold nanoparticle dimers. , 2011, , .		0
399	Quantum-dot-induced phase shift in a pillar microcavity. Physical Review A, 2011, 84, .	2.5	80
400	Fe3O4/ZnO: A high-quality magnetic oxide-semiconductor heterostructure by reactive deposition. Applied Physics Letters, 2011, 98, 012512.	3.3	26
401	Development of superconducting single-photon detectors for integrated quantum photonics applications., 2011,,.		0
402	Development of high-speed directly modulated DFB and DBR lasers with surface gratings. Proceedings of SPIE, 2011, , .	0.8	2
403	High-speed directly-modulated lasers employing photon-photon resonance. , 2011, , .		2
404	Monolithic tunable GaSb-based lasers at 3.3â€[micro sign]m. Electronics Letters, 2011, 47, 1092.	1.0	8
405	In-plane manipulation of quantum dots in high quality laterally contacted micropillar cavities. Applied Physics Letters, 2011, 98, 191111.	3.3	2
406	Waveguide Single-Photon Detectors for Integrated Quantum Photonics., 2011,,.		0
407	High power DFB laser diodes. , 2010, , .		0
408	Semiconductor quantum light emitters and sensors. , 2010, , .		0
409	Experimental approach to ultrafast optical spin echo of a single quantum dot electron spin. Proceedings of SPIE, 2010, , .	0.8	0
410	Universal and reconfigurable logic gates in a compact three-terminal resonant tunneling diode. Applied Physics Letters, 2010, 96, .	3.3	47
411	On-chip beam steering. Nature Photonics, 2010, 4, 411-412.	31.4	23
412	Ultrafast optical spin echo in a single quantum dot. Nature Photonics, 2010, 4, 367-370.	31.4	298
413	High-power pulsed 976-nm DFB laser diodes. , 2010, , .		6
414	Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Applied Physics Letters, 2010, 96, .	3.3	176

#	Article	IF	Citations
415	Pulsed Nuclear Pumping and Spin Diffusion in a Single Charged Quantum Dot. Physical Review Letters, 2010, 105, 107401.	7.8	51
416	Atomic scale interface engineering for strain compensated epitaxially grown InAs/AlSb superlattices. Nanotechnology, 2010, 21, 455603.	2.6	12
417	Whispering gallery mode lasing in high quality GaAs/AlAs pillar microcavities. Applied Physics Letters, 2010, 96, 071103.	3.3	34
418	Tunable Long Wavelength (\$sim\$2.8 \$mu\$m) GalnAsSb–GaSb Quantum-Well Binary Superimposed Grating Lasers. IEEE Photonics Technology Letters, 2010, , .	2.5	1
419	Highly anisotropic decay rates of single quantum dots in photonic crystal membranes. Optics Letters, 2010, 35, 2768.	3.3	8
420	Exciton-polariton laser diodes. , 2010, , .		0
421	Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nature Communications, $2010, 1, 150$.	12.8	374
422	Mode Imaging and Selection in Strongly Coupled Nanoantennas. Nano Letters, 2010, 10, 2105-2110.	9.1	136
423	Interband Cascade Lasers for Wavelength Specific Applications in the 3-4 \hat{l} 4m Spectral Range. , 2010, , .		0
424	Highly anisotropic decay rate of single quantum dots in photonic crystal membranes. , 2010, , .		1
425	Quantum Dot Microlasers. , 2009, , .		0
426	Light-matter interaction of a site-controlled quantum dot- micropillar cavity system., 2009,,.		0
427	Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration. Nanotechnology, 2009, 20, 434012.	2.6	71
428	Mode-Controlled Tapered Lasers Based on Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 780-784.	2.9	3
429	GalnNAs-Based High-Power and Tapered Laser Diodes for Pumping Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 968-972.	2.9	11
430	Single quantum dot controlled gain modulation in highâ€∢i>Q micropillar lasers. Physica Status Solidi (B): Basic Research, 2009, 246, 277-282.	1.5	3
431	Wavelength stabilized quantum dot lasers for high power applications. Physica Status Solidi (B): Basic Research, 2009, 246, 872-875.	1.5	2
432	Emission wavelength tuning of interband cascade lasers in the 3–4â€,Î⅓m spectral range. Applied Physics Letters, 2009, 95, .	3.3	32

#	Article	IF	Citations
433	Progress in photonic crystal quantum-dot and quantum-well lasers. , 2009, , .		O
434	Mixed-valence interactions in triarylamine–gold–nanoparticle conjugates. Chemical Communications, 2009, , 6213.	4.1	4
435	Single photon emission from a site-controlled quantum dot-micropillar cavity system. Applied Physics Letters, 2009, 94, 111111.	3.3	86
436	Engineered quantum dot structures: fabrication and applications. Proceedings of SPIE, 2009, , .	0.8	0
437	Quantum dot micropillar lasers. Proceedings of SPIE, 2009, , .	0.8	0
438	Semiconductor Cavity Quantum Electrodynamics with Single Quantum Dots. Acta Physica Polonica A, 2009, 116, 445-450.	0.5	1
439	Integrated wavelength monitoring in a photonic-crystal tunable laser diode. Photonics and Nanostructures - Fundamentals and Applications, 2008, 6, 205-212.	2.0	6
440	Frequency-Dependent Linewidth Enhancement Factor of Quantum-Dot Lasers. IEEE Photonics Technology Letters, 2008, 20, 1736-1738.	2.5	14
441	High-Power Frequency Stabilized GaSb DBR Tapered Laser. IEEE Photonics Technology Letters, 2008, 20, 2162-2164.	2.5	5
442	Experimental Realization of Highly Efficient Broadband Coupling of Single Quantum Dots to a Photonic Crystal Waveguide. Physical Review Letters, 2008, 101, 113903.	7.8	279
443	Photonic crystal cavity based gas sensor. Applied Physics Letters, 2008, 92, .	3.3	113
444	Scalable fabrication of optical resonators with embedded site-controlled quantum dots. Optics Letters, 2008, 33, 1759.	3.3	44
445	Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide. Optics Express, 2008, 16, 4605.	3.4	39
446	Single quantum dot controlled lasing effects in high-Q micropillar cavities. Optics Express, 2008, 16, 4848.	3.4	72
447	Elimination of cross-talk in waveguide intersections of triangular lattice photonic crystals. Optics Express, 2008, 16, 11399.	3.4	10
448	Optimization of photonic crystal cavity for chemical sensing. Optics Express, 2008, 16, 11709.	3.4	78
449	High-brightness quantum well and quantum dot tapered lasers. , 2008, , .		5
450	Compact integrated photonic crystal demultiplexer for emitting and receiving InP photonic integrated circuits. , 2008, , .		1

#	Article	IF	CITATIONS
451	1240nm GalnNAs high power laser diodes. , 2008, , .		O
452	Discretely tunable single-mode lasers on GaSb using two-dimensional photonic crystal intracavity mirrors. Nanotechnology, 2008, 19, 235202.	2.6	3
453	Lithographic alignment to site-controlled quantum dots for device integration. Applied Physics Letters, 2008, 92, .	3.3	96
454	Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes. Applied Physics Letters, 2008, 93, 094102.	3.3	19
455	Single mode quantum dot tapered lasers. , 2008, , .		0
456	Group Delay Measurements of High Quality GaAs Photonic Crystal Cavities., 2007,,.		0
457	Vertically emitting AlAs/GaAs microcavities with quality factors exceeding $110.000.$, $2007,$, .		0
458	Spectral and spatial single mode emission from a photonic crystal distributed feedback laser. Applied Physics Letters, 2007, 90, 121135.	3.3	15
459	Laser emission from quantum dots in high-Q micropillar cavities. , 2007, , .		0
460	Group delay measurements on photonic crystal resonators. Applied Physics Letters, 2007, 90, 151117.	3.3	11
461	Nanophotonic integrated lasers. , 2007, , .		1
462	Strong coupling of single quantum dots to micropillars. , 2007, , .		0
463	Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity. Optics Express, 2007, 15, 17214.	3.4	37
464	High Q whispering gallery modes in GaAs/AlAs pillar microcavities. Optics Express, 2007, 15, 17291.	3.4	31
465	Photon Antibunching from a Single Quantum-Dot-Microcavity System in the Strong Coupling Regime. Physical Review Letters, 2007, 98, 117402.	7.8	309
466	AlAsâ^•GaAs micropillar cavities with quality factors exceeding 150.000. Applied Physics Letters, 2007, 90, 251109.	3.3	278
467	Fine-tuning of GaAs photonic crystal cavities by digital etching. Microelectronic Engineering, 2007, 84, 1405-1407.	2.4	11
468	Dispersive properties of photonic crystal waveguide resonators. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3727-3738.	1.8	2

#	Article	IF	CITATIONS
469	High-Q whispering gallery modes in pillar microcavities. Annales De Physique, 2007, 32, 123-126.	0.2	O
470	Photonic Crystal Based Active Optoelectronic Devices. , 2006, , 329-346.		1
471	Ultrahigh-quality photonic crystal cavity in GaAs. Optics Letters, 2006, 31, 1229.	3.3	42
472	Disorder-induced losses in planar photonic crystals. Optics Letters, 2006, 31, 1426.	3. 3	28
473	Coherent photonic coupling of semiconductor quantum dots. Optics Letters, 2006, 31, 1738.	3.3	43
474	Coherent photonic coupling of semiconductor quantum dots: erratum. Optics Letters, 2006, 31, 3507.	3.3	1
475	Nanostructured semiconductors for optoelectronic applications. , 2006, , .		1
476	Photonic crystal waveguide-based dispersion compensators. , 2006, , .		0
477	Strong and weak coupling of single quantum dot excitons in pillar microcavities. Physica Status Solidi (B): Basic Research, 2006, 243, 2224-2228.	1.5	7
478	Recent advances in nanophotonicsâ€"From physics to devices. Current Applied Physics, 2006, 6, e166-e171.	2.4	1
479	Investigation of strong coupling between single quantum dot excitons and single photons in pillar microcavities. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 471-475.	2.7	7
480	Photonic crystal quantum cascade lasers with improved threshold characteristics operating at room temperature. Applied Physics Letters, 2006, 89, 191113.	3. 3	6
481	Tunable Photonic Crystal Laser with Integrated Wavelength Monitor. , 2006, , .		2
482	Lasing in high-Q quantum-dot micropillar cavities. Applied Physics Letters, 2006, 89, 051107.	3.3	92
483	Low-loss InP-based photonic crystal waveguides and resonators. , 2005, , .		0
484	Optimization of the wallplug-efficiency of laser diodes by an electro-optical-thermal black-box model. Optical and Quantum Electronics, 2005, 37, 63-75.	3.3	0
485	Large dispersion in photonic crystal waveguide resonator. Electronics Letters, 2005, 41, 414.	1.0	8
486	GaAs-based four-channel photonic crystal quantum dot laser module operating at 1.3â€[micro sign]m. Electronics Letters, 2005, 41, 1121.	1.0	0

#	Article	IF	Citations
487	Integrated four-channel GaAs-based quantum dot laser module with photonic crystals. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 3193.	1.6	0
488	Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals. Applied Physics Letters, 2005, 87, 121105.	3.3	23
489	Semiconductor quantum dot micropillar cavities for quantum electrodynamic experiments., 2005,,.		1
490	Codirectional couplers in GaAs-based planar photonic crystals. Applied Physics Letters, 2005, 86, 081108.	3.3	3
491	Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions. Applied Physics Letters, 2005, 86, 111105.	3.3	78
492	Tunable GalnNAs lasers with photonic crystal mirrors. IEEE Photonics Technology Letters, 2005, 17, 2247-2249.	2.5	11
493	Integrated Photonic Devices: Wavelength switching by mode interference between photonic crystal channel waveguides., 2005,,.		0
494	From single laser diodes to integrated active and passive optoelectronic components based on photonic crystals. , 2005, , .		0
495	Wavelength switching by mode interference between longitudinally coupled photonic crystal channel waveguides. Electronics Letters, 2004, 40, 29.	1.0	5
496	GaAs-based 1.3â€,μm microlasers with photonic crystal mirrors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 3344.	1.6	4
497	Photonic crystal waveguides with propagation losses in the 1â€,dB∕mm range. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 3356.	1.6	8
498	Low-loss photonic crystal and monolithic InP integration: bands, bends, lasers, and filters. , 2004, 5360, 119.		4
499	Mode anti-crossing and carrier transport effects in tunable photonic crystal coupled-cavity lasers. Optics Communications, 2004, 239, 187-191.	2.1	4
500	DFB laser diodes in the wavelength range from 760 nm to 2.5 $\hat{1}$ /4m. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 3243-3247.	3.9	43
501	Semiconductor photonic crystals for optoelectronics. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 802-808.	2.7	47
502	Photonic crystal waveguide directional couplers as wavelength selective optical filters. Optics Communications, 2004, 230, 387-392.	2.1	86
503	GalnNAs-based distributed feedback laser diodes emitting at 1.5â€[micro sign]m. Electronics Letters, 2004, 40, 427.	1.0	17
504	Two-Channel Tunable Laser Diode Based on Photonic Crystals. IEEE Photonics Technology Letters, 2004, 16, 353-555.	2.5	21

#	Article	IF	Citations
505	Widely Tunable Complex-Coupled Distributed Feedback Laser With Photonic Crystal Mirrors and Integrated Optical Amplifier. IEEE Photonics Technology Letters, 2004, 16, 729-731.	2.5	3
506	Tunable photonic crystal coupled-cavity laser. IEEE Journal of Quantum Electronics, 2004, 40, 1306-1314.	1.9	23
507	Integration of active and passive photonic-crystal-based optoelectronic components. , 2004, , .		1
508	Technology and properties of photonic-crystal-based active and passive optoelectronic devices. , 2004, , .		0
509	Coherent InGaAsâ^•GaAs laser arrays with laterally coupled distributed feedback gratings. Electronics Letters, 2004, 40, 118.	1.0	3
510	Continuous-wave operation of GalnNAsSb distributed feedback lasers at 1.5â€[micro sign]m. Electronics Letters, 2004, 40, 1487.	1.0	6
511	Wavelength switching by mode interference of coupled cavities with photonic crystal reflectors. Applied Physics B: Lasers and Optics, 2003, 77, 733-737.	2.2	1
512	Magneto-tunnelling spectroscopy of nitrogen clusters in Ga(AsN) alloys. IEE Proceedings: Optoelectronics, 2003, 150, 49.	0.8	4
513	GalnNAs for GaAs based lasers for the 1.3 to $1.5\hat{l}\frac{1}{4}$ m range. Journal of Crystal Growth, 2003, 251, 353-359.	1.5	59
514	$1.3-\hat{l}\frac{1}{4}$ m continuously tunable distributed feedback laser with constant power output based on GalnNAs-GaAs. IEEE Photonics Technology Letters, 2003, 15, 897-899.	2.5	3
515	Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 373.	2.1	10
516	Photonic crystal optical filter based on contra-directional waveguide coupling. Applied Physics Letters, 2003, 83, 5121-5123.	3.3	81
517	Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals. Applied Physics Letters, 2003, 82, 2767-2769.	3.3	128
518	Self-switching of branched multiterminal junctions: a ballistic half-adder. Applied Physics Letters, 2003, 83, 2462-2464.	3.3	14
519	Two-dimensional photonic crystal coupled-defect laser diode. Applied Physics Letters, 2003, 82, 4-6.	3.3	134
520	Tunable distributed feedback laser with photonic crystal mirrors. Applied Physics Letters, 2003, 82, 2942-2944.	3.3	25
521	Unidirectional laterally gain-coupled distributed feedback ring laser diodes. Electronics Letters, 2003, 39, 1055.	1.0	0
522	1.4â€[micro sign]m continuous-wave GalnNAs distributed feedback laser diodes. Electronics Letters, 2003, 39, 1815.	1.0	6

#	Article	IF	Citations
523	Capacitive-Coupling-Enhanced Switching Gain in an Electron Y-Branch Switch. Physical Review Letters, 2002, 89, 226804.	7.8	38
524	1.3 $\hat{l}\frac{1}{4}$ m continuous-wave GalnNAs/GaAs distributed feedback laser diodes. Applied Physics Letters, 2002, 81, 4330-4331.	3.3	33
525	Transmission spectroscopy of photonic crystal based waveguides with resonant cavities. Journal of Applied Physics, 2002, 91, 4791-4794.	2.5	18
526	Nanofabrication of high quality photonic crystals for integrated optics circuits. Nanotechnology, 2002, 13, 341-345.	2.6	17
527	Efficient light transmission through InP-based photonic crystal waveguides. Electronics Letters, 2002, 38, 178.	1.0	14
528	Wide range tunable laterally coupled distributed-feedback lasers based on InGaAs-GaAs quantum dots. IEEE Photonics Technology Letters, 2002, 14, 1246-1248.	2.5	25
529	Enhanced light emission ofInxGa1â^'xAsquantum dots in a two-dimensional photonic-crystal defect microcavity. Physical Review B, 2002, 66, .	3.2	101
530	Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals. IEEE Journal of Quantum Electronics, 2002, 38, 770-785.	1.9	52
531	Optical study of two-dimensional InP-based photonic crystals by internal light source technique. IEEE Journal of Quantum Electronics, 2002, 38, 786-799.	1.9	68
532	Deeply etched two-dimensional photonic crystals fabricated on GaAs/AlGaAs slab waveguides by using chemically assisted ion beam etching. Microelectronic Engineering, 2002, 61-62, 875-880.	2.4	22
533	GaAs field effect transistors fabricated by imprint lithography. Microelectronic Engineering, 2002, 60, 451-455.	2.4	12
534	Integration of 2D photonic crystals with ridge waveguide lasers. Optical and Quantum Electronics, 2002, 34, 91-99.	3.3	1
535	Title is missing!. Optical and Quantum Electronics, 2002, 34, 1137-1144.	3.3	1
536	Wide range tunable laterally coupled distributed feedback lasers. , 2002, , .		0
537	Semiconductor lasers with 2-D-photonic crystal mirrors based on a wet-oxidized Al2O3-mask. IEEE Photonics Technology Letters, 2001, 13, 406-408.	2.5	8
538	Photonic crystal tapers for ultracompact mode conversion. Optics Letters, 2001, 26, 1102.	3.3	120
539	Optical study of 2D photonic crystals in an InP/GaInAsP slab waveguide structure. Materials Research Society Symposia Proceedings, 2001, 694, 1.	0.1	0
540	Lateral coupling – a material independent way to complex coupled DFB lasers. Optical Materials, 2001, 17, 19-25.	3.6	52

#	Article	IF	CITATIONS
541	Fabrication of semiconductor lasers with 2D-photonic crystal mirrors using a wet oxidized Al2O3-mask. Microelectronic Engineering, 2001, 57-58, 1017-1021.	2.4	4
542	Fabrication of quantum point contacts and quantum dots by imprint lithography. Microelectronic Engineering, 2001, 57-58, 397-403.	2.4	11
543	Short cavity InP-lasers with 2D photonic crystal mirrors. IEE Proceedings: Optoelectronics, 2001, 148, 183-187.	0.8	2
544	Photonic crystals for optoelectronic devices. , 2001, 4283, 406.		0
545	InP-based short cavity lasers with 2D photonic crystal mirror. Electronics Letters, 2001, 37, 428.	1.0	15
546	Transmission spectra measurements on photonic crystal based bent waveguides., 2001,,.		1
547	Nanofabrication of two-dimensional photonic crystal mirrors for 1.5 νm short cavity lasers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 2775.	1.6	38
548	Two-dimensional photonic crystal laser mirrors. Semiconductor Science and Technology, 2001, 16, 227-232.	2.0	10
549	High Frequency Operation of Nanoelectronic Y-Branch at Room Temperature. Japanese Journal of Applied Physics, 2001, 40, L867-L868.	1.5	13
550	Single Electron Transistor Fabricated on Heavily Doped Silicon-on-Insulator Substrate. Japanese Journal of Applied Physics, 2001, 40, 2013-2016.	1.5	3
551	Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP–InP. Applied Physics Letters, 2001, 79, 2684-2686.	3.3	17
552	Ultrashort InGaAsP/InP lasers with deeply etched Bragg mirrors. Applied Physics Letters, 2001, 78, 4074-4075.	3.3	12
553	Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering. Applied Physics Letters, 2001, 79, 3579-3581.	3.3	41
554	Single-mode operation of coupled-cavity lasers based on two-dimensional photonic crystals. Applied Physics Letters, 2001, 79, 4091-4093.	3.3	32
555	InGaAs quantum dots for high-performance lasers and single-dot spectroscopy., 2000, 3944, 802.		1
556	Bent laser cavity based on 2D photonic crystal waveguide. Electronics Letters, 2000, 36, 324.	1.0	13
557	Silicon quantum point contact with aluminum gate. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 74, 193-196.	3.5	2
558	Photon confinement effects â€" from physics to applications. Microelectronic Engineering, 2000, 53, 21-28.	2.4	6

#	Article	IF	CITATIONS
559	7.8 GHz small-signal modulation bandwidth of 1.3 [micro sign]m DQW GalnAsN/GaAs laser diodes. Electronics Letters, 2000, 36, 1025.	1.0	21
560	Nanofabrication techniques for lasers with two-dimensional photonic crystal mirrors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 3501.	1.6	13
561	Fabrication of quantum point contacts by imprint lithography and transport studies. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 3561.	1.6	33
562	Quantum point contacts fabricated by nanoimprint lithography. Applied Physics Letters, 2000, 77, 2237-2239.	3.3	16
563	1.3-νm GalnNAs-AlGaAs distributed feedback lasers. IEEE Photonics Technology Letters, 2000, 12, 239-241.	2.5	46
564	Nanolithography using a 100 kV electron beam lithography system with a Schottky emitter. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 86.	1.6	16
565	Buried heterostructure complex-coupled distributed feedback 1.55 νm lasers fabricated using dry etching processes and quaternary layer overgrowth. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17. 2622.	1.6	4
566	Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers. Applied Physics Letters, 1999, 74, 483-485.	3.3	82
567	InGaAs/AlGaAs quantum dot DFB lasers operating up to 213°C. Electronics Letters, 1999, 35, 2036.	1.0	20
568	GalnAsN/AlGaAs distributed feedback laserdiodes at 1.3 νm. , 0, , .		0
569	Laterally complex-coupled DFB-lasers in the 1.55 νm range based on GS-MBE-grown InGaAsP-InP. , 0, , .		0
570	Integration of 2D photonic crystals in InP laserdiodes. , 0, , .		0
571	Integration of photonic crystal based tunable lasers, waveguides and Y-couplers. , 0, , .		0
572	Towards realization of high quality 2D-photonic crystals in InP/GalnAsP/InP., 0,,.		0
573	Continuous-wave uncooled interband cascade lasers for gas sensing. SPIE Newsroom, 0, , .	0.1	1