Karl Kunzelmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/585035/publications.pdf

Version: 2024-02-01

190 papers 10,457 citations

²⁶⁶³⁰
56
h-index

90 g-index

193 all docs

193
docs citations

193 times ranked 8968 citing authors

#	Article	IF	CITATIONS
1	Systems Approaches to Unravel Molecular Function: High-content siRNA Screen Identifies TMEM16A Traffic Regulators as Potential Drug Targets for Cystic Fibrosis. Journal of Molecular Biology, 2022, 434, 167436.	4.2	3
2	Airway Delivery of Hydrogel-Encapsulated Niclosamide for the Treatment of Inflammatory Airway Disease. International Journal of Molecular Sciences, 2022, 23, 1085.	4.1	7
3	Influence of Anoctamin-4 and -9 on ADAM10 and ADAM17 Sheddase Function. Membranes, 2022, 12, 123.	3.0	6
4	Expression of SLC26A9 in Airways and Its Potential Role in Asthma. International Journal of Molecular Sciences, 2022, 23, 2998.	4.1	8
5	TMEM16A deficiency: a potentially fatal neonatal disease resulting from impaired chloride currents. Journal of Medical Genetics, 2021, 58, 247-253.	3.2	10
6	TMEM16A Mediates Mucus Production in Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 50-58.	2.9	25
7	CLCA1 Regulates Airway Mucus Production and Ion Secretion Through TMEM16A. International Journal of Molecular Sciences, 2021, 22, 5133.	4.1	16
8	The molecular mechanism of CFTR―and secretinâ€dependent renal bicarbonate excretion. Journal of Physiology, 2021, 599, 3003-3011.	2.9	15
9	Getting hands on a drug for Covid-19: Inhaled and Intranasal Niclosamide. Lancet Regional Health - Europe, The, 2021, 4, 100094.	5.6	18
10	Gender-Dependent Phenotype in Polycystic Kidney Disease Is Determined by Differential Intracellular Ca2+ Signals. International Journal of Molecular Sciences, 2021, 22, 6019.	4.1	10
11	Loss of PKD1 and PKD2 share common effects on intracellular Ca2+ signaling. Cell Calcium, 2021, 97, 102413.	2.4	8
12	Mucus Release and Airway Constriction by TMEM16A May Worsen Pathology in Inflammatory Lung Disease. International Journal of Molecular Sciences, 2021, 22, 7852.	4.1	15
13	A polycystin-2 protein with modified channel properties leads to an increased diameter of renal tubules and to renal cysts. Journal of Cell Science, 2021, 134, .	2.0	2
14	The chloride channel CFTR is not required for cyst growth in an ADPKD mouse model. FASEB Journal, 2021, 35, e21897.	0.5	9
15	Calmodulin-Dependent Regulation of Overexpressed but Not Endogenous TMEM16A Expressed in Airway Epithelial Cells. Membranes, 2021, 11, 723.	3.0	5
16	P. aeruginosa Induced Lipid Peroxidation Causes Ferroptotic Cell Death in Airways. Cellular Physiology and Biochemistry, 2021, 55, 590-604.	1.6	17
17	CyFi-MAP: an interactive pathway-based resource for cystic fibrosis. Scientific Reports, 2021, 11, 22223.	3.3	6
18	Transport properties in CFTRâ^'/â^' knockout piglets suggest normal airway surface liquid pH and enhanced amiloride-sensitive Na+ absorption. Pflugers Archiv European Journal of Physiology, 2020, 472, 1507-1519.	2.8	17

#	Article	IF	CITATIONS
19	Impaired Renal HCO3 - Excretion in Cystic Fibrosis. Journal of the American Society of Nephrology: JASN, 2020, 31, 1711-1727.	6.1	35
20	GABA, but Not Bestrophin-1, Is Localized in Astroglial Processes in the Mouse Hippocampus and the Cerebellum. Frontiers in Molecular Neuroscience, 2020, 13, 135.	2.9	4
21	Cyst growth in ADPKD is prevented by pharmacological and genetic inhibition of TMEM16A in vivo. Nature Communications, 2020, 11, 4320.	12.8	46
22	Ca2+ Dependence of Volume-Regulated VRAC/LRRC8 and TMEM16A Cl– Channels. Frontiers in Cell and Developmental Biology, 2020, 8, 596879.	3.7	6
23	Regulation of TMEM16A by CK2 and Its Role in Cellular Proliferation. Cells, 2020, 9, 1138.	4.1	13
24	NCX1 represents an ionic Na+ sensing mechanism in macrophages. PLoS Biology, 2020, 18, e3000722.	5. 6	22
25	Targeting of Intracellular TMEM16 Proteins to the Plasma Membrane and Activation by Purinergic Signaling. International Journal of Molecular Sciences, 2020, 21, 4065.	4.1	11
26	TMEM16A drives renal cyst growth by augmenting Ca2+ signaling in M1 cells. Journal of Molecular Medicine, 2020, 98, 659-671.	3.9	13
27	KLF4 Acts as a wt-CFTR Suppressor through an AKT-Mediated Pathway. Cells, 2020, 9, 1607.	4.1	11
28	Pharmacological Inhibition and Activation of the Ca2+ Activated Clâ^' Channel TMEM16A. International Journal of Molecular Sciences, 2020, 21, 2557.	4.1	41
29	Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Frontiers in Cardiovascular Medicine, 2019, 6, 99.	2.4	12
30	Control of Ion Transport by Tmem16a Expressed in Murine Intestine. Frontiers in Physiology, 2019, 10, 1262.	2.8	15
31	Drug Repurposing: The Anthelmintics Niclosamide and Nitazoxanide Are Potent TMEM16A Antagonists That Fully Bronchodilate Airways. Frontiers in Pharmacology, 2019, 10, 51.	3.5	101
32	TMEM16F/Anoctamin 6 in Ferroptotic Cell Death. Cancers, 2019, 11, 625.	3.7	35
33	Contribution of Anoctamins to Cell Survival and Cell Death. Cancers, 2019, 11, 382.	3.7	60
34	Plasma membrane–localized TMEM16 proteins are indispensable for expression of CFTR. Journal of Molecular Medicine, 2019, 97, 711-722.	3.9	31
35	ADAM10 sheddase activation is controlled by cell membrane asymmetry. Journal of Molecular Cell Biology, 2019, 11, 979-993.	3.3	48
36	Niclosamide repurposed for the treatment of inflammatory airway disease. JCI Insight, 2019, 4, .	5.0	58

#	Article	IF	Citations
37	TMEM16A is indispensable for basal mucus secretion in airways and intestine. FASEB Journal, 2019, 33, 4502-4512.	0.5	76
38	Lipid Peroxidation Drives Renal Cyst Growth In Vitro through Activation of TMEM16A. Journal of the American Society of Nephrology: JASN, 2019, 30, 228-242.	6.1	63
39	TMEM16A in Cystic Fibrosis: Activating or Inhibiting?. Frontiers in Pharmacology, 2019, 10, 3.	3.5	59
40	Contribution of TMEM16F to pyroptotic cell death. Cell Death and Disease, 2018, 9, 300.	6.3	48
41	Phenytoin inhibits necroptosis. Cell Death and Disease, 2018, 9, 359.	6.3	50
42	Compartmentalized crosstalk of CFTR and TMEM16A (ANO1) through EPAC1 and ADCY1. Cellular Signalling, 2018, 44, 10-19.	3.6	41
43	CFTR supports cell death through ROS-dependent activation of TMEM16F (anoctamin 6). Pflugers Archiv European Journal of Physiology, 2018, 470, 305-314.	2.8	32
44	Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca ²⁺ and plasma membrane lipid. Journal of Physiology, 2018, 596, 217-229.	2.9	61
45	A novel microscopy-based assay identifies extended synaptotagmin-1 (ESYT1) as a positive regulator of anoctamin 1 traffic. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 421-431.	4.1	19
46	Anoctamin-6 regulates ADAM sheddase function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1598-1610.	4.1	24
47	HIF-1α promotes cyst progression in a mouse model of autosomal dominant polycystic kidney disease. Kidney International, 2018, 94, 887-899.	5.2	63
48	Nephron-specific knockout of TMEM16A leads to reduced number of glomeruli and albuminuria. American Journal of Physiology - Renal Physiology, 2018, 315, F1777-F1786.	2.7	12
49	Regulation and Function of TMEM16F in Renal Podocytes. International Journal of Molecular Sciences, 2018, 19, 1798.	4.1	5
50	Differential effects of anoctamins on intracellular calcium signals. FASEB Journal, 2017, 31, 2123-2134.	0.5	91
51	Epithelial Chloride Transport by CFTR Requires TMEM16A. Scientific Reports, 2017, 7, 12397.	3.3	100
52	Bicarbonate in cystic fibrosis. Journal of Cystic Fibrosis, 2017, 16, 653-662.	0.7	66
53	Cellular defects by deletion of ANO10 are due to deregulated local calcium signaling. Cellular Signalling, 2017, 30, 41-49.	3.6	45
54	Ca2+ signals, cell membrane disintegration, and activation of TMEM16F during necroptosis. Cellular and Molecular Life Sciences, 2017, 74, 173-181.	5.4	39

#	Article	IF	Citations
55	Ion channels in regulated cell death. Cellular and Molecular Life Sciences, 2016, 73, 2387-2403.	5.4	78
56	P2Y2R is a direct target of HIF-1α and mediates secretion-dependent cyst growth of renal cyst-forming epithelial cells. Purinergic Signalling, 2016, 12, 687-695.	2.2	25
57	Relationship between TMEM16A/anoctamin 1 and LRRC8A. Pflugers Archiv European Journal of Physiology, 2016, 468, 1751-1763.	2.8	29
58	TMEM16F-Mediated Platelet Membrane Phospholipid Scrambling Is Critical for Hemostasis and Thrombosis but not Thromboinflammation in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2152-2157.	2.4	45
59	Expression of anoctamins in retinal pigment epithelium (RPE). Pflugers Archiv European Journal of Physiology, 2016, 468, 1921-1929.	2.8	12
60	Phosphatidylserine exposure is required for ADAM17 sheddase function. Nature Communications, 2016, 7, 11523.	12.8	134
61	Glucose promotes secretion-dependent renal cyst growth. Journal of Molecular Medicine, 2016, 94, 107-117.	3.9	16
62	Clâ^' channels in apoptosis. European Biophysics Journal, 2016, 45, 599-610.	2.2	41
63	Non-essential contribution of LRRC8A to volume regulation. Pflugers Archiv European Journal of Physiology, 2016, 468, 805-816.	2.8	36
64	Modulating Ca2+ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Archiv European Journal of Physiology, 2016, 468, 475-490.	2.8	56
65	Survival protein anoctamin $\hat{a} \in 6$ controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB Journal, 2016, 30, 727-737.	0.5	52
66	Cellular volume regulation by anoctamin 6: Ca2+, phospholipase A2 and osmosensing. Pflugers Archiv European Journal of Physiology, 2016, 468, 335-349.	2.8	50
67	Protein Traffic Disorders: an Effective High-Throughput Fluorescence Microscopy Pipeline for Drug Discovery. Scientific Reports, 2015, 5, 9038.	3.3	55
68	Involvement of Ca2+ Activated Cl- Channel Ano6 in Platelet Activation and Apoptosis. Cellular Physiology and Biochemistry, 2015, 37, 1934-1944.	1.6	25
69	A Coding Variant of ANO10, Affecting Volume Regulation of Macrophages, Is Associated with Borrelia Seropositivity. Molecular Medicine, 2015, 21, 26-37.	4.4	49
70	Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2630-9.	7.1	108
71	Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Archiv European Journal of Physiology, 2015, 467, 1203-1213.	2.8	67
72	Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages. Nature Communications, 2015, 6, 6245.	12.8	127

#	Article	IF	CITATIONS
73	Anoctamin-6 Controls Bone Mineralization by Activating the Calcium Transporter NCX1. Journal of Biological Chemistry, 2015, 290, 6270-6280.	3.4	35
74	TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca2+ and cell volume. Trends in Biochemical Sciences, 2015, 40, 535-543.	7. 5	76
75	Chloride secretion, anoctamin 1 and Ca2+signaling. Channels, 2014, 8, 387-388.	2.8	6
76	Hypoxia-Inducible Factor-1α Causes Renal Cyst Expansion through Calcium-Activated Chloride Secretion. Journal of the American Society of Nephrology: JASN, 2014, 25, 465-474.	6.1	57
77	Role of anoctamins in cancer and apoptosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130096.	4.0	88
78	The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function. Kidney International, 2014, 85, 1369-1381.	5.2	60
79	Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst–forming epithelial cells. Kidney International, 2014, 85, 1058-1067.	5.2	71
80	TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Clâ [^] currents. Cellular Signalling, 2014, 26, 2826-2833.	3.6	22
81	A Disease-causing Mutation Illuminates the Protein Membrane Topology of the Kidney-expressed Prohibitin Homology (PHB) Domain Protein Podocin. Journal of Biological Chemistry, 2014, 289, 11262-11271.	3.4	16
82	Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase?. Pflugers Archiv European Journal of Physiology, 2014, 466, 407-414.	2.8	93
83	Rectal forceps biopsy procedure in cystic fibrosis: technical aspects and patients perspective for clinical trials feasibility. BMC Gastroenterology, 2013, 13, 91.	2.0	24
84	Slc26a11 is prominently expressed in the brain and functions as a chloride channel: expression in Purkinje cells and stimulation of V H+-ATPase. Pflugers Archiv European Journal of Physiology, 2013, 465, 1583-1597.	2.8	28
85	High-Content siRNA Screen Reveals Global ENaC Regulators and Potential Cystic Fibrosis Therapy Targets. Cell, 2013, 154, 1390-1400.	28.9	50
86	CFTR mutations altering CFTR fragmentation. Biochemical Journal, 2013, 449, 295-305.	3.7	13
87	Control of <scp>TMEM16A</scp> by <scp>INO</scp> â€4995 and other inositolphosphates. British Journal of Pharmacology, 2013, 168, 253-265.	5 . 4	37
88	<scp>CFTR</scp> : a hub for kinases and crosstalk of c <scp>AMP</scp> and <scp>C</scp> a ²⁺ . FEBS Journal, 2013, 280, 4417-4429.	4.7	73
89	TMEM16A Induces MAPK and Contributes Directly to Tumorigenesis and Cancer Progression. Cancer Research, 2012, 72, 3270-3281.	0.9	252
90	Expression and Functional Significance of the Ca ²⁺ -Activated Cl ⁻ Channel ANO6 in Dendritic Cells. Cellular Physiology and Biochemistry, 2012, 30, 1319-1332.	1.6	43

#	Article	IF	Citations
91	Measurements of CFTR-Mediated Clâ [^] Secretion in Human Rectal Biopsies Constitute a Robust Biomarker for Cystic Fibrosis Diagnosis and Prognosis. PLoS ONE, 2012, 7, e47708.	2.5	52
92	Airway epithelial cells—Hyperabsorption in CF?. International Journal of Biochemistry and Cell Biology, 2012, 44, 1232-1235.	2.8	15
93	Expression and function of epithelial anoctamins. Experimental Physiology, 2012, 97, 184-192.	2.0	56
94	Anoctamins are a family of Ca2+ activated Clâ^ channels. Journal of Cell Science, 2012, 125, 4991-8.	2.0	153
95	Airway epithelial cellsâ€"Functional links between CFTR and anoctamin dependent Clâ^' secretion. International Journal of Biochemistry and Cell Biology, 2012, 44, 1897-1900.	2.8	35
96	Enhanced Expression of ANO1 in Head and Neck Squamous Cell Carcinoma Causes Cell Migration and Correlates with Poor Prognosis. PLoS ONE, 2012, 7, e43265.	2.5	135
97	Regulation of ENaC biogenesis by the stress response protein SERP1. Pflugers Archiv European Journal of Physiology, 2012, 463, 819-827.	2.8	14
98	Differential contribution of SLC26A9 to Cl ^{â^'} conductance in polarized and nonâ€polarized epithelial cells. Journal of Cellular Physiology, 2012, 227, 2323-2329.	4.1	40
99	Role of KCNMA1 in Breast Cancer. PLoS ONE, 2012, 7, e41664.	2.5	83
100	Expression and functional significance of Ca2+â€activated Clâ€channels in dendritic cells. FASEB Journal, 2012, 26, 884.3.	0.5	0
101	CFTR and TMEM16A are Separate but Functionally Related Cl ⁻ Channels. Cellular Physiology and Biochemistry, 2011, 28, 715-724.	1.6	64
102	Role of the Ca2+-activated Cl- channels bestrophin and anoctamin in epithelial cells. Biological Chemistry, 2011, 392, 125-34.	2.5	56
103	Calmodulinâ€dependent activation of the epithelial calciumâ€dependent chloride channel TMEM16A. FASEB Journal, 2011, 25, 1058-1068.	0.5	129
104	F508del-CFTR increases intracellular Ca2+ signaling that causes enhanced calcium-dependent Clâ´´ conductance in cystic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1385-1392.	3.8	32
105	Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption. Pflugers Archiv European Journal of Physiology, 2011, 461, 579-589.	2.8	94
106	Anoctamins. Pflugers Archiv European Journal of Physiology, 2011, 462, 195-208.	2.8	103
107	CFTR induces extracellular acid sensing in Xenopus oocytes which activates endogenous Ca2+-activated Cl- conductance. Pflugers Archiv European Journal of Physiology, 2011, 462, 479-487.	2.8	4
108	Contribution of Casein Kinase 2 and Spleen Tyrosine Kinase to CFTR Trafficking and Protein Kinase A-Induced Activity. Molecular and Cellular Biology, 2011, 31, 4392-4404.	2.3	39

#	Article	IF	CITATIONS
109	Effect of Annexin A5 on CFTR: regulated traffic or scaffolding?. Molecular Membrane Biology, 2011, 28, 14-29.	2.0	17
110	Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18168-18172.	7.1	129
111	Introduction to Section V: Assessment of CFTR Function. Methods in Molecular Biology, 2011, 741, 407-418.	0.9	5
112	Functional Genomics Assays to Study CFTR Traffic and ENaC Function. Methods in Molecular Biology, 2011, 742, 249-264.	0.9	19
113	ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Archiv European Journal of Physiology, 2010, 459, 485-497.	2.8	75
114	Escherichia coli \hat{I}_{\pm} -Hemolysin Triggers Shrinkage of Erythrocytes via KCa3.1 and TMEM16A Channels with Subsequent Phosphatidylserine Exposure. Journal of Biological Chemistry, 2010, 285, 15557-15565.	3.4	53
115	Metformin Treatment of Diabetes Mellitus Increases the Risk for Pancreatitis in Patients Bearing the CFTR-mutation S573C. Cellular Physiology and Biochemistry, 2010, 25, 389-396.	1.6	4
116	Expression and Function of Epithelial Anoctamins. Journal of Biological Chemistry, 2010, 285, 7838-7845.	3.4	194
117	Polycystin-2 Activity Is Controlled by Transcriptional Coactivator with PDZ Binding Motif and PALS1-associated Tight Junction Protein. Journal of Biological Chemistry, 2010, 285, 33584-33588.	3.4	20
118	Disruption of the K+ Channel \hat{l}^2 -Subunit KCNE3 Reveals an Important Role in Intestinal and Tracheal Clâ \hat{l}^2 -Transport. Journal of Biological Chemistry, 2010, 285, 7165-7175.	3.4	95
119	Mechanistic Insight into Control of CFTR by AMPK. Journal of Biological Chemistry, 2009, 284, 5645-5653.	3.4	72
120	Bestrophin-1 Enables Ca2+-activated Clâ^' Conductance in Epithelia. Journal of Biological Chemistry, 2009, 284, 29405-29412.	3.4	82
121	TMEM16 Proteins Produce Volume-regulated Chloride Currents That Are Reduced in Mice Lacking TMEM16A. Journal of Biological Chemistry, 2009, 284, 28571-28578.	3.4	159
122	Loss of TMEM16A Causes a Defect in Epithelial Ca2+-dependent Chloride Transport. Journal of Biological Chemistry, 2009, 284, 28698-28703.	3.4	213
123	Bestrophin 1 Promotes Epithelial-to-mesenchymal Transition of Renal Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2009, 20, 1556-1564.	6.1	38
124	APC Sensitive Gastric Acid Secretion. Cellular Physiology and Biochemistry, 2009, 23, 133-142.	1.6	25
125	Inhibition of Protein Kinase CK2 Closes the CFTR Cl ⁻ Channel, but has no Effect on the Cystic Fibrosis Mutant ΔF508-CFTR. Cellular Physiology and Biochemistry, 2009, 24, 347-360.	1.6	32
126	Bestrophin and TMEM16â€"Ca2+ activated Clâ^' channels with different functions. Cell Calcium, 2009, 46, 233-241.	2.4	108

#	Article	IF	Citations
127	Regulation of Clâ´' secretion by AMPK in vivo. Pflugers Archiv European Journal of Physiology, 2009, 457, 1071-1078.	2.8	32
128	CFTR is activated through stimulation of purinergic P2Y2 receptors. Pflugers Archiv European Journal of Physiology, 2009, 457, 1373-1380.	2.8	38
129	Functional assembly and purinergic activation of bestrophins. Pflugers Archiv European Journal of Physiology, 2009, 458, 431-441.	2.8	17
130	AMPK controls epithelial Na+ channels through Nedd4-2 and causes an epithelial phenotype when mutated. Pflugers Archiv European Journal of Physiology, 2009, 458, 713-721.	2.8	64
131	Upregulation of colonic ion channels in APC Min/+ mice. Pflugers Archiv European Journal of Physiology, 2008, 456, 847-855.	2.8	21
132	Allergen-induced airway hyperresponsiveness is absent in ecto-5′-nucleotidase (CD73)-deficient mice. Pflugers Archiv European Journal of Physiology, 2008, 457, 431-440.	2.8	23
133	Molecular and Functional Characterization of CBAVD-Causing Mutations Located in CFTR Nucleotide-Binding Domains. Cellular Physiology and Biochemistry, 2008, 22, 079-092.	1.6	8
134	Molecular evolution and functional divergence of the bestrophin protein family. BMC Evolutionary Biology, 2008, 8, 72.	3.2	30
135	Bestrophin 1 and 2 are components of the Ca2+ activated Clâ° conductance in mouse airways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1993-2000.	4.1	55
136	Cl Transport in Complemented CF Bronchial Epithelial Cells Correlates with CFTR mRNA Expression Levels. Cellular Physiology and Biochemistry, 2008, 22, 057-068.	1.6	58
137	Eag1 and Bestrophin 1 Are Up-regulated in Fast-growing Colonic Cancer Cells. Journal of Biological Chemistry, 2008, 283, 7421-7428.	3.4	51
138	Regulation of the Epithelial Na+ Channel by the Protein Kinase CK2. Journal of Biological Chemistry, 2008, 283, 13225-13232.	3.4	38
139	Control of Ion Transport in Mouse Proximal and Distal Colon by Prolactin. Cellular Physiology and Biochemistry, 2007, 19, 77-88.	1.6	29
140	Expression of Voltage-Gated Potassium Channels in Human and Mouse Colonic Carcinoma. Clinical Cancer Research, 2007, 13, 824-831.	7.0	132
141	Protein Kinase CK2, Cystic Fibrosis Transmembrane Conductance Regulator, and the ΔF508 Mutation. Journal of Biological Chemistry, 2007, 282, 10804-10813.	3.4	12
142	An Extract from the Medicinal Plant Phyllanthus acidus and Its Isolated Compounds Induce Airway Chloride Secretion: A Potential Treatment for Cystic Fibrosis. Molecular Pharmacology, 2007, 71, 366-376.	2.3	46
143	Voltageâ€gated K channels support proliferation of colonic carcinoma cells. FASEB Journal, 2007, 21, 35-44.	0.5	86
144	Inhibition of Airway Na + Transport by Respiratory Syncytial Virus. Journal of Virology, 2007, 81, 3714-3720.	3.4	25

#	Article	IF	CITATIONS
145	Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends in Pharmacological Sciences, 2007, 28, 334-341.	8.7	133
146	Calcium-dependent chloride conductance in epithelia: is there a contribution by Bestrophin?. Pflugers Archiv European Journal of Physiology, 2007, 454, 879-889.	2.8	62
147	Molecular cloning and characterization of the mouse Na+ sulfate cotransporter gene (Slc13a4): structure and expression. Genes and Genetic Systems, 2006, 81, 265-272.	0.7	15
148	Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17079-17086.	7.1	262
149	Flagellin of Pseudomonas aeruginosa inhibits Na + transport in airway epithelia. FASEB Journal, 2006, 20, 545-546.	0.5	30
150	IADS, a Decomposition Product of DIDS Activates a Cation Conductance in <i>Xenopus</i> Oocytes and Human Erythrocytes: New Compound for the Diagnosis of Cystic Fibrosis. Cellular Physiology and Biochemistry, 2006, 18, 243-252.	1.6	13
151	Correction of the CF defect by curcumin: hypes and disappointments. BioEssays, 2005, 27, 9-13.	2.5	45
152	Ion Channels and Cancer. Journal of Membrane Biology, 2005, 205, 159-173.	2.1	395
153	Increase in intracellular Cl? concentration by cAMP- and Ca2+-dependent stimulation of M1 collecting duct cells. Pflugers Archiv European Journal of Physiology, 2005, 449, 470-478.	2.8	12
154	The rat Na+–sulfate cotransporter rNaS2: functional characterization, tissue distribution, and gene (slc13a4) structure. Pflugers Archiv European Journal of Physiology, 2005, 450, 262-268.	2.8	17
155	Cl– Interference with the Epithelial Na+ Channel ENaC. Journal of Biological Chemistry, 2005, 280, 31587-31594.	3.4	53
156	Control of ion transport in mammalian airways by protease activated receptors type 2 (PARâ€2). FASEB Journal, 2005, 19, 969-970.	0.5	40
157	Purinergic P2Y ₆ Receptors Induce Ca ²⁺ and CFTR Dependent Cl ⁻ Secretion in Mouse Trachea. Cellular Physiology and Biochemistry, 2005, 16, 99-108.	1.6	48
158	Establishment and Characterization of a Novel Polarized MDCK Epithelial Cellular Model for CFTR Studies. Cellular Physiology and Biochemistry, 2005, 16, 281-290.	1.6	15
159	Characterization of Novel Airway Submucosal Gland Cell Models for Cystic Fibrosis. Cellular Physiology and Biochemistry, 2005, 15, 251-262.	1.6	18
160	Functional characterization and genomic organization of the human Na+-sulfate cotransporter hNaS2 gene (SLC13A4). Biochemical and Biophysical Research Communications, 2005, 326, 729-734.	2.1	32
161	Letter to the Editors. Oligonucleotides, 2004, 14, 157-158.	2.7	11
162	Acute Effects of Parainfluenza Virus on Epithelial Electrolyte Transport. Journal of Biological Chemistry, 2004, 279, 48760-48766.	3.4	38

#	Article	IF	Citations
163	Effects of dietary lectins on ion transport in epithelia. British Journal of Pharmacology, 2004, 142, 1219-1226.	5.4	10
164	The $\hat{l}^{\underline{o}}$ -opioid receptor agonist asimadoline inhibits epithelial transport in mouse trachea and colon. European Journal of Pharmacology, 2004, 503, 185-190.	3.5	5
165	The î"F508 mutation results in loss of CFTR function and mature protein in native human colon. Gastroenterology, 2004, 126, 32-41.	1.3	95
166	CFTR Clâ ⁻ channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology, 2004, 127, 1085-1095.	1.3	130
167	Assessment of CFTR function in rectal biopsies for the diagnosis of cystic fibrosis. Journal of Cystic Fibrosis, 2004, 3, 165-169.	0.7	69
168	ENaC is inhibited by an increase in the intracellular Cl– concentration mediated through activation of Cl– channels. Pflugers Archiv European Journal of Physiology, 2003, 445, 504-512.	2.8	52
169	Pharmacotherapy of the Ion Transport Defect in Cystic Fibrosis. Treatments in Respiratory Medicine, 2003, 2, 299-309.	1.2	52
170	Modulation of Ca2+-Activated Clâ^ Secretion by Basolateral K+ Channels in Human Normal and Cystic Fibrosis Airway Epithelia. Pediatric Research, 2003, 53, 608-618.	2.3	101
171	Electrolyte Transport in the Mammalian Colon: Mechanisms and Implications for Disease. Physiological Reviews, 2002, 82, 245-289.	28.8	582
172	Mechanisms for the inhibition of amiloride-sensitive Na+ absorption by extracellular nucleotides in mouse trachea. Pflugers Archiv European Journal of Physiology, 2002, 444, 220-226.	2.8	33
173	Ion Transport Induced by Proteinase-Activated Receptors (PAR2) in Colon and Airways. Cell Biochemistry and Biophysics, 2002, 36, 209-214.	1.8	43
174	Control of the Cystic Fibrosis Transmembrane Conductance Regulator by $\hat{l}\pm G$ i and RGS Proteins. Biochemical and Biophysical Research Communications, 2001, 281, 917-923.	2.1	9
175	CFTR: Interacting With Everything?. Physiology, 2001, 16, 167-170.	3.1	65
176	Properties and function of KCNQ1 K+ channels isolated from the rectal gland of Squalus acanthias. Pflugers Archiv European Journal of Physiology, 2001, 443, 146-154.	2.8	8
177	Mechanisms of the inhibition of epithelial Na+ channels by CFTR and purinergic stimulation. Kidney International, 2001, 60, 455-461.	5.2	61
178	Pharmacotherapy Of The Ion Transport Defect In Cystic Fibrosis. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 857-867.	1.9	29
179	The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Clâ-'concentration. EMBO Reports, 2001, 2, 1047-1051.	4.5	84
180	Control of Cystic Fibrosis Transmembrane Conductance Regulator Expression by BAP31. Journal of Biological Chemistry, 2001, 276, 20340-20345.	3.4	55

#	Article	IF	CITATION
181	14-3-3 Interacts with Regulator of G Protein Signaling Proteins and Modulates Their Activity. Journal of Biological Chemistry, 2000, 275, 28167-28172.	3.4	104
182	Aquaporin 3 cloned from Xenopus laevis is regulated by the cystic fibrosis transmembrane conductance regulator. FEBS Letters, 2000, 475, 291-295.	2.8	52
183	Control of epithelial Na. Pflugers Archiv European Journal of Physiology, 2000, 440, 193.	2.8	1
184	The Cystic Fibrosis Transmembrane Conductance Regulator Activates Aquaporin 3 in Airway Epithelial Cells. Journal of Biological Chemistry, 1999, 274, 11811-11816.	3.4	102
185	Cystic Fibrosis Transmembrane Conductance Regulator Inhibits Epithelial Na+ Channels Carrying Liddle's Syndrome Mutations. Journal of Biological Chemistry, 1999, 274, 13894-13899.	3.4	39
186	Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments. Human Molecular Genetics, 1998, 7, 1913-1919.	2.9	122
187	Functional Properties of the Type-3 InsP3 Receptor in 16HBE14oâ^ Bronchial Mucosal Cells. Journal of Biological Chemistry, 1998, 273, 8983-8986.	3.4	81
188	Simultaneous recording of the cell membrane potential and properties of the cell attached membrane of HT29 colon carcinoma and CF-PAC cells. Pflugers Archiv European Journal of Physiology, 1991, 419, 209-211.	2.8	55
189	Properties and regulation of chloride channels in cystic fibrosis and normal airway cells. Pflugers Archiv European Journal of Physiology, 1989, 415, 172-182.	2.8	108
190	Characteristics of apical chloride channels in human colon cells (HT29). Pflugers Archiv European Journal of Physiology, 1987, 410, 487-494.	2.8	158