Marcio Rodrigues Lambais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5850227/publications.pdf

Version: 2024-02-01

257450 189892 2,671 53 24 50 citations h-index g-index papers 53 53 53 3318 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cover loss in a seagrass Posidonia oceanica meadow accelerates soil organic matter turnover and alters soil prokaryotic communities. Organic Geochemistry, 2021, 151, 104140.	1.8	17
2	Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: Changing nitrogen cycle paradigms. Science of the Total Environment, 2021, 773, 145066.	8.0	17
3	No evidence of positive feedback between litter deposition and seedling growth rate in Neotropical savannas. Plant and Soil, 2021, 469, 305-320.	3.7	3
4	Proteomic and Transcriptomic Analyses Indicate Metabolic Changes and Reduced Defense Responses in Mycorrhizal Roots of Oeceoclades maculata (Orchidaceae) Collected in Nature. Journal of Fungi (Basel, Switzerland), 2020, 6, 148.	3. 5	13
5	Arbuscular mycorrhizal fungal communities in soils under three phytophysiognomies of the Brazilian Atlantic Forest. Acta Botanica Brasilica, 2019, 33, 50-60.	0.8	13
6	The importance of phyllosphere on plant functional ecology: aÂphyllo trait manifesto. New Phytologist, 2018, 219, 1145-1149.	7.3	36
7	Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development. Archives of Microbiology, 2017, 199, 787-798.	2.2	14
8	Phyllosphere Metaproteomes of Trees from the Brazilian Atlantic Forest Show High Levels of Functional Redundancy. Microbial Ecology, 2017, 73, 123-134.	2.8	49
9	Estimating genetic structure and diversity of cyanobacterial communities in Atlantic forest phyllosphere. Canadian Journal of Microbiology, 2016, 62, 953-960.	1.7	19
10	Early Changes in Soil Metabolic Diversity and Bacterial Community Structure in Sugarcane under Two Harvest Management Systems. Revista Brasileira De Ciencia Do Solo, 2015, 39, 701-713.	1.3	2
11	Bacterial and Archaeal Communities in Bleached Mottles of Tropical Podzols. Microbial Ecology, 2015, 69, 372-382.	2.8	5
12	Bacterial Diversity in Tree Canopies of the Atlantic Forest., 2015,, 49-54.		1
13	Early changes in arbuscular mycorrhiza development in sugarcane under two harvest management systems. Brazilian Journal of Microbiology, 2014, 45, 995-1005.	2.0	11
14	Brazilian Microbiome Project: Revealing the Unexplored Microbial Diversityâ€"Challenges and Prospects. Microbial Ecology, 2014, 67, 237-241.	2.8	119
15	Artificial neural network modeling of microbial community structures in the Atlantic Forest of Brazil. Soil Biology and Biochemistry, 2014, 69, 101-109.	8.8	13
16	Archaeal diversity and the extent of iron and manganese pyritization in sediments from a tropical mangrove creek (Cardoso Island, Brazil). Estuarine, Coastal and Shelf Science, 2014, 146, 1-13.	2.1	18
17	Bacterial Community Assemblages Associated with the Phyllosphere, Dermosphere, and Rhizosphere of Tree Species of the Atlantic Forest are Host Taxon Dependent. Microbial Ecology, 2014, 68, 567-574.	2.8	92
18	Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza, 2014, 24, 349-360.	2.8	47

#	Article	IF	Citations
19	Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis, 2013, 60, 155-167.	2.3	26
20	Bacterial and archaeal communities in the acid pit lake sediments of a chalcopyrite mine. Extremophiles, 2013, 17, 941-951.	2.3	22
21	Impact of Amazon land use on the community of soil fungi. Scientia Agricola, 2013, 70, 59-67.	1.2	25
22	Effects of Stimulation of Copper Bioleaching on Microbial Community in Vineyard Soil and Copper Mining Waste. Biological Trace Element Research, 2012, 146, 124-133.	3.5	12
23	Sulfur in agriculture. Revista Brasileira De Ciencia Do Solo, 2012, 36, 1369-1379.	1.3	66
24	Bioreduction of Cu(II) by Cell-Free Copper Reductase from a Copper Resistant Pseudomonas sp. NA. Biological Trace Element Research, 2011, 143, 1182-1192.	3. 5	11
25	Potential Phytoextraction and Phytostabilization of Perennial Peanut on Copper-Contaminated Vineyard Soils and Copper Mining Waste. Biological Trace Element Research, 2011, 143, 1729-1739.	3 . 5	16
26	Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere, 2010, 81, 1149-1154.	8.2	46
27	Bacteria diversity and microbial biomass in forest, pasture and fallow soils in the southwestern Amazon basin. Revista Brasileira De Ciencia Do Solo, 2009, 33, 907-916.	1.3	45
28	Cloning of putative ureG genes from Glomus intraradices and urease activities in tobacco arbuscular mycorrhizal roots. Scientia Agricola, 2009, 66, 258-266.	1.2	1
29	Regula \tilde{A} § \tilde{A} £o do desenvolvimento de micorrizas arbusculares. Revista Brasileira De Ciencia Do Solo, 2009, 33, 1-16.	1.3	32
30	Bacterial communities and biogeochemical transformations of iron and sulfur in a high saltmarsh soil profile. Soil Biology and Biochemistry, 2008, 40, 2854-2864.	8.8	17
31	Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Scientia Agricola, 2008, 65, 259-267.	1.2	57
32	Comunidades microbianas, atividade enzimática e fungos micorrÃzicos em solo rizosférico de "Landfarming" de resÃduos petroquÃmicos. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1501-1512.	1.3	1
33	Impactos da aplicação de biossólidos na microbiota de solos tropicais. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1129-1138.	1.3	14
34	Characterization of a putativeXylella fastidiosa diffusible signal factor by HRGC-EI-MS. Journal of Mass Spectrometry, 2007, 42, 490-496.	1.6	41
35	Characterization of a putative <i>Xylella fastidiosa</i> diffusible signal factor by HRGCâ€Elâ€MS. Journal of Mass Spectrometry, 2007, 42, 1375-1381.	1.6	36
36	Intestinal Bacterial Community and Growth Performance of Chickens Fed Diets Containing Antibiotics. Poultry Science, 2006, 85, 747-752.	3.4	98

#	Article	IF	CITATIONS
37	Unraveling the signaling and signal transduction mechanisms controlling arbuscular mycorrhiza development. Scientia Agricola, 2006, 63, 405-413.	1.2	20
38	Bacterial Diversity in Tree Canopies of the Atlantic Forest. Science, 2006, 312, 1917-1917.	12.6	200
39	Variabilidade espacial da comunidade bacteriana intestinal de su \tilde{A} nos suplementados com antibi \tilde{A}^3 ticos ou extratos herbais. Revista Brasileira De Zootecnia, 2005, 34, 1225-1233.	0.8	10
40	The Structure of Bacterial Community in the Intestines of Newly Hatched Chicks. Journal of Applied Poultry Research, 2005, 14, 232-237.	1.2	49
41	Expression of putative pathogenicity-related genes in Xylella fastidios agrown at low and high cell density conditions in vitro. FEMS Microbiology Letters, 2003, 222, 83-92.	1.8	49
42	Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytologist, 2003, 160, 421-428.	7.3	83
43	In silico characterization and expression analyses of sugarcane putative sucrose non-fermenting-1 (SNF1) related kinases. Genetics and Molecular Biology, 2001, 24, 35-41.	1.3	6
44	In silico differential display of defense-related expressed sequence tags from sugarcane tissues infected with diazotrophic endophytes. Genetics and Molecular Biology, 2001, 24, 103-111.	1.3	28
45	The genome sequence of the plant pathogen Xylella fastidiosa. Nature, 2000, 406, 151-157.	27.8	827
46	A genomic approach to the understanding of Xylella fastidiosa pathogenicity. Current Opinion in Microbiology, 2000, 3, 459-462.	5.1	50
47	Ãcido salicÃlico inibe a formação de micorrizas arbusculares e modifica a expressão de quitinases e b-1,3-glucanases em raÃzes de feijoeiro. Scientia Agricola, 2000, 57, 19-25.	1.2	10
48	Spatial distribution of chitinases and beta-1,3-glucanase transcripts in bean arbuscular mycorrhizal roots under low and high soil phosphate conditions. New Phytologist, 1998, 140, 33-42.	7.3	43
49	Soybean roots infected by Glomus intraradices strains differing in infectivity exhibit differential chitnase and βâ€1,3â€glucanase expression. New Phytologist, 1996, 134, 531-538.	7.3	28
50	Differential expression of defense-related genes in arbuscular mycorrhiza. Canadian Journal of Botany, 1995, 73, 533-540.	1.1	60
51	Response of Stylosanthes guianensis to endomycorrhizal fungi inoculation as affected by lime and phosphorus applications. Plant and Soil, 1993, 150, 109-116.	3.7	13
52	Suppression of Endochitinase, \hat{l}^2 -1,3-Endoglucanase, and Chalcone Isomerase Expression in Bean Vesicular-Arbuscular Mycorrhizal Roots Under Different Soil Phosphate Conditions. Molecular Plant-Microbe Interactions, 1993, 6, 75.	2.6	123
53	Response of Stylosanthes guianensis to endomycorrhizal fungi inoculation as affected by lime and phosphorus applications. Plant and Soil, 1990, 129, 283-289.	3.7	17