
David E Heinrichs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5849692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleotide biosynthesis: the base of bacterial pathogenesis. Trends in Microbiology, 2022, 30, 793-804.	7.7	34
2	Superantigens promote <i>Staphylococcus aureus</i> bloodstream infection by eliciting pathogenic interferon-gamma production. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
3	InÂvivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms. Journal of Biological Chemistry, 2022, 298, 101823.	3.4	6
4	Rapid removal of phagosomal ferroportin in macrophages contributes to nutritional immunity. Blood Advances, 2021, 5, 459-474.	5.2	13
5	GraXRS-Dependent Resistance of Staphylococcus aureus to Human Osteoarthritic Synovial Fluid. MSphere, 2021, 6, .	2.9	Ο
6	Coagulase-negative staphylococci release a purine analog that inhibits Staphylococcus aureus virulence. Nature Communications, 2021, 12, 1887.	12.8	27
7	Draft Genome Sequence of Staphylococcus chromogenes ATCC 43764, a Coagulase-Negative Staphylococcus Strain with Antibacterial Potential. Microbiology Resource Announcements, 2021, 10, e0049221.	0.6	2
8	Mutations in a Membrane Permease or hpt Lead to 6-Thioguanine Resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0076021.	3.2	3
9	Heme-Dependent Siderophore Utilization Promotes Iron-Restricted Growth of the Staphylococcus aureus <i>hemB</i> Small-Colony Variant. Journal of Bacteriology, 2021, 203, e0045821.	2.2	10
10	Discovery of an antivirulence compound that reverses Î ² -lactam resistance in MRSA. Nature Chemical Biology, 2020, 16, 143-149.	8.0	57
11	Population Analysis of Staphylococcus aureus Reveals a Cryptic, Highly Prevalent Superantigen SElW That Contributes to the Pathogenesis of Bacteremia. MBio, 2020, 11, .	4.1	14
12	<i>De Novo</i> Purine Biosynthesis Is Required for Intracellular Growth of Staphylococcus aureus and for the Hypervirulence Phenotype of a <i>purR</i> Mutant. Infection and Immunity, 2020, 88, .	2.2	24
13	Macrophageâ€driven nutrient delivery to phagosomal <i>Staphylococcus aureus</i> supports bacterial growth. EMBO Reports, 2020, 21, e50348.	4.5	12
14	An ECF-type transporter scavenges heme to overcome iron-limitation in Staphylococcus lugdunensis. ELife, 2020, 9, .	6.0	19
15	<i>Staphylococcus aureus</i> exhibits heterogeneous siderophore production within the vertebrate host. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21980-21982.	7.1	62
16	The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by Staphylococcus aureus. Journal of Biological Chemistry, 2019, 294, 11622-11636.	3.4	11
17	Stress-induced inactivation of the Staphylococcus aureus purine biosynthesis repressor leads to hypervirulence. Nature Communications, 2019, 10, 775.	12.8	54
18	DNA Binding and Sensor Specificity of FarR, a Novel TetR Family Regulator Required for Induction of the Fatty Acid Efflux Pump FarE in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2019, 201, .	2.2	19

#	Article	IF	CITATIONS
19	Identification of Key Determinants of Staphylococcus aureus Vaginal Colonization. MBio, 2019, 10, .	4.1	33
20	Sbnl is a free serine kinase that generates -phospho-l-serine for staphyloferrin B biosynthesis in. Journal of Biological Chemistry, 2018, 293, 6147-6160.	3.4	12
21	A Fluorescence Based-Proliferation Assay for the Identification of Replicating Bacteria Within Host Cells. Frontiers in Microbiology, 2018, 9, 3084.	3.5	18
22	Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. MBio, 2018, 9, .	4.1	82
23	Staphylococcus aureus Uses the GraXRS Regulatory System To Sense and Adapt to the Acidified Phagolysosome in Macrophages. MBio, 2018, 9, .	4.1	57
24	Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Functional Ecology, 2018, 32, 2357-2368.	3.6	105
25	Repression of branched-chain amino acid synthesis in Staphylococcus aureus is mediated by isoleucine via CodY, and by a leucine-rich attenuator peptide. PLoS Genetics, 2018, 14, e1007159.	3.5	55
26	The surreptitious survival of the emerging pathogen <i>Staphylococcus lugdunensis</i> within macrophages as an immune evasion strategy. Cellular Microbiology, 2018, 20, e12869.	2.1	9
27	Intracellular replication of <i>Staphylococcus aureus</i> in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cellular Microbiology, 2016, 18, 514-535.	2.1	174
28	Iron Acquisition Strategies of Bacterial Pathogens. Microbiology Spectrum, 2016, 4, .	3.0	134
29	The role of two branchedâ€chain amino acid transporters in <scp><i>S</i></scp> <i>taphylococcus aureus</i> growth, membrane fatty acid composition and virulence. Molecular Microbiology, 2016, 102, 850-864.	2.5	40
30	Deciphering the Substrate Specificity of SbnA, the Enzyme Catalyzing the First Step in Staphyloferrin B Biosynthesis. Biochemistry, 2016, 55, 927-939.	2.5	22
31	A Heme-responsive Regulator Controls Synthesis of Staphyloferrin B in Staphylococcus aureus. Journal of Biological Chemistry, 2016, 291, 29-40.	3.4	44
32	Paradoxical acclimation responses in the thermal performance of insect immunity. Oecologia, 2016, 181, 77-85.	2.0	38
33	Competing for Iron: Duplication and Amplification of the isd Locus in Staphylococcus lugdunensis HKU09-01 Provides a Competitive Advantage to Overcome Nutritional Limitation. PLoS Genetics, 2016, 12, e1006246.	3.5	22
34	Transition Metal Ion Homeostasis. , 2016, , 171-220.		0
35	Involvement of reductases <scp>I</scp> ru <scp>O</scp> and <scp>N</scp> tr <scp>A</scp> in iron acquisition by <scp><i>S</i></scp> <i>taphylococcus aureus</i> . Molecular Microbiology, 2015, 96, 1192-1210.	2.5	16
36	Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens, 2015, 4, 826-868.	2.8	151

#	Article	IF	CITATIONS
37	Role of BrnQ1 and BrnQ2 in Branched-Chain Amino Acid Transport and Virulence in Staphylococcus aureus. Infection and Immunity, 2015, 83, 1019-1029.	2.2	49
38	Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in <i>Staphylococcus aureus</i> . FEBS Letters, 2015, 589, 730-737.	2.8	19
39	Inducible Expression of a Resistance-Nodulation-Division-Type Efflux Pump in Staphylococcus aureus Provides Resistance to Linoleic and Arachidonic Acids. Journal of Bacteriology, 2015, 197, 1893-1905.	2.2	58
40	Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiology Reviews, 2015, 39, 592-630.	8.6	212
41	SbnG, a Citrate Synthase in Staphylococcus aureus. Journal of Biological Chemistry, 2014, 289, 33797-33807.	3.4	18
42	<scp>TCA</scp> cycle activity in <scp><i>S</i></scp> <i>taphylococcus aureus</i> is essential for ironâ€regulated synthesis of staphyloferrin <scp>A</scp> , but not staphyloferrin <scp>B</scp> : the benefit of a second citrate synthase. Molecular Microbiology, 2014, 92, 824-839.	2.5	42
43	Deferoxamine mesylate enhances virulence of community-associated methicillin resistant Staphylococcus aureus. Microbes and Infection, 2014, 16, 967-972.	1.9	20
44	Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness. BMC Genomics, 2014, 15, 851.	2.8	72
45	IsdB-dependent Hemoglobin Binding Is Required for Acquisition of Heme by Staphylococcus aureus. Journal of Infectious Diseases, 2014, 209, 1764-1772.	4.0	88
46	Growth promotion of the opportunistic human pathogen, Staphylococcus lugdunensis , by heme, hemoglobin, and coculture with Staphylococcus aureus. MicrobiologyOpen, 2014, 3, 182-195.	3.0	20
47	Role of Lipase from Community-Associated Methicillin-Resistant Staphylococcus aureus Strain USA300 in Hydrolyzing Triglycerides into Growth-Inhibitory Free Fatty Acids. Journal of Bacteriology, 2014, 196, 4044-4056.	2.2	75
48	Crystal and Solution Structure Analysis of FhuD2 from <i>Staphylococcus aureus</i> in Multiple Unliganded Conformations and Bound to Ferrioxamine-B. Biochemistry, 2014, 53, 2017-2031.	2.5	31
49	Demonstration of the functional role of conserved Glu-Arg residues in the Staphylococcus aureus ferrichrome transporter. BioMetals, 2014, 27, 143-153.	4.1	5
50	Identification of a Positively Charged Platform in <i>Staphylococcus aureus</i> HtsA That Is Essential for Ferric Staphyloferrin A Transport. Biochemistry, 2014, 53, 5060-5069.	2.5	11
51	Synthesis of L-2,3-Diaminopropionic Acid, a Siderophore and Antibiotic Precursor. Chemistry and Biology, 2014, 21, 379-388.	6.0	60
52	Discovery of an Iron-Regulated Citrate Synthase in Staphylococcus aureus. Chemistry and Biology, 2012, 19, 1568-1578.	6.0	30
53	Multiprotein Heme Shuttle Pathway in <i>Staphylococcus aureus</i> : Iron-Regulated Surface Determinant Cog-Wheel Kinetics. Journal of the American Chemical Society, 2012, 134, 16578-16585.	13.7	34
54	Induction of the Staphylococcal Proteolytic Cascade by Antimicrobial Fatty Acids in Community Acquired Methicillin Resistant Staphylococcus aureus. PLoS ONE, 2012, 7, e45952.	2.5	40

#	Article	IF	CITATIONS
55	The iron-regulated staphylococcal lipoproteins. Frontiers in Cellular and Infection Microbiology, 2012, 2, 41.	3.9	40
56	The Staphylococci and Staphylococcal Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2012, 2, 66.	3.9	15
57	Staphylococcus aureus Transporters Hts, Sir, and Sst Capture Iron Liberated from Human Transferrin by Staphyloferrin A, Staphyloferrin B, and Catecholamine Stress Hormones, Respectively, and Contribute to Virulence. Infection and Immunity, 2011, 79, 2345-2355.	2.2	115
58	Mutation of L-2,3-diaminopropionic acid synthase genes blocks staphyloferrin B synthesis in Staphylococcus aureus. BMC Microbiology, 2011, 11, 199.	3.3	38
59	A Modulatory Interleukin-10 Response to Staphylococcal Peptidoglycan Prevents Th1/Th17 Adaptive Immunity to Staphylococcus aureus. Journal of Infectious Diseases, 2011, 204, 253-262.	4.0	78
60	Siderophore-mediated iron acquisition in the staphylococci. Journal of Inorganic Biochemistry, 2010, 104, 282-288.	3.5	60
61	The Staphylococcus aureus Siderophore Receptor HtsA Undergoes Localized Conformational Changes to Enclose Staphyloferrin A in an Arginine-rich Binding Pocket. Journal of Biological Chemistry, 2010, 285, 11162-11171.	3.4	65
62	Staphylococcal Major Autolysin (Atl) Is Involved in Excretion of Cytoplasmic Proteins. Journal of Biological Chemistry, 2010, 285, 36794-36803.	3.4	105
63	<i>Staphylococcus aureus</i> Nonribosomal Peptide Secondary Metabolites Regulate Virulence. Science, 2010, 329, 294-296.	12.6	108
64	Specificity of Staphyloferrin B Recognition by the SirA Receptor from Staphylococcus aureus. Journal of Biological Chemistry, 2010, 285, 34579-34588.	3.4	56
65	<i>Staphylococcus aureus</i> Fur Regulates the Expression of Virulence Factors That Contribute to the Pathogenesis of Pneumonia. Infection and Immunity, 2010, 78, 1618-1628.	2.2	127
66	Characterization of IsdH (NEAT domain 3) and IsdB (NEAT domain 2) in <i>Staphylococcus aureus</i> by magnetic circular dichroism spectroscopy and electrospray ionization mass spectrometry. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1006-1016.	0.8	11
67	The <i>N</i> -Acetylmannosamine Transferase Catalyzes the First Committed Step of Teichoic Acid Assembly in <i>Bacillus subtilis</i> and <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2009, 191, 4030-4034.	2.2	64
68	Characterization of staphyloferrin A biosynthetic and transport mutants in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2009, 72, 947-963.	2.5	120
69	Molecular characterization of staphyloferrin B biosynthesis in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2009, 74, 594-608.	2.5	122
70	Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome. Nature Medicine, 2009, 15, 641-648.	30.7	121
71	Heme binding in the NEAT domains of IsdA and IsdC of Staphylococcus aureus. Journal of Inorganic Biochemistry, 2008, 102, 480-488.	3.5	44
72	Receptor-Interacting Protein-2 Deficiency Delays Macrophage Migration and Increases Intracellular Infection during Peritoneal Dialysis-Associated Peritonitis. American Journal of Nephrology, 2008, 28, 879-889.	3.1	8

#	Article	IF	CITATIONS
73	NK Cells Play a Critical Protective Role in Host Defense against Acute Extracellular <i>Staphylococcus aureus</i> Bacterial Infection in the Lung. Journal of Immunology, 2008, 180, 5558-5568.	0.8	113
74	Demonstration of the Iron-regulated Surface Determinant (Isd) Heme Transfer Pathway in Staphylococcus aureus. Journal of Biological Chemistry, 2008, 283, 28125-28136.	3.4	142
75	Iron acquisition by the haem-binding Isd proteins in <i>Staphylococcus aureus</i> : studies of the mechanism using magnetic circular dichroism. Biochemical Society Transactions, 2008, 36, 1138-1143.	3.4	31
76	Protoporphyrin IX and heme binding properties of <i>Staphylococcus aureus</i> IsdC. Journal of Porphyrins and Phthalocyanines, 2007, 11, 165-171.	0.8	8
77	Heme Coordination by Staphylococcus aureus IsdE. Journal of Biological Chemistry, 2007, 282, 28815-28822.	3.4	86
78	Heme Binding Properties of Staphylococcus aureus IsdE. Biochemistry, 2007, 46, 12777-12787.	2.5	35
79	Haem recognition by a Staphylococcus aureus NEAT domain. Molecular Microbiology, 2007, 63, 139-149.	2.5	142
80	Inhibition of expression of a staphylococcal superantigen-like protein by a soluble factor from Lactobacillus reuteri. Microbiology (United Kingdom), 2006, 152, 1155-1167.	1.8	68
81	Characterization of the Heme Binding Properties ofStaphylococcus aureusIsdAâ€. Biochemistry, 2006, 45, 12867-12875.	2.5	61
82	Evidence for siderophore-dependent iron acquisition in group B streptococcus. Molecular Microbiology, 2006, 59, 707-721.	2.5	32
83	Requirement of Staphylococcus aureus ATP-Binding Cassette-ATPase FhuC for Iron-Restricted Growth and Evidence that It Functions with More than One Iron Transporter. Journal of Bacteriology, 2006, 188, 2048-2055.	2.2	87
84	The yjeQ Gene Is Required for Virulence of Staphylococcus aureus. Infection and Immunity, 2006, 74, 4918-4921.	2.2	21
85	FhuD1, a Ferric Hydroxamate-binding Lipoprotein in Staphylococcus aureus. Journal of Biological Chemistry, 2004, 279, 53152-53159.	3.4	59
86	Role of Siderophore Biosynthesis in Virulence of Staphylococcus aureus : Identification and Characterization of Genes Involved in Production of a Siderophore. Infection and Immunity, 2004, 72, 29-37.	2.2	185
87	Involvement of SirABC in Iron-Siderophore Import in Staphylococcus aureus. Journal of Bacteriology, 2004, 186, 8356-8362.	2.2	100
88	In vivo heme scavenging by Staphylococcus aureus IsdC and IsdE proteins. Biochemical and Biophysical Research Communications, 2004, 320, 781-788.	2.1	46
89	The Role of FhuD2 in Iron(III)-Hydroxamate Transport in Staphylococcus aureus. Journal of Biological Chemistry, 2003, 278, 49890-49900.	3.4	72
90	Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein. Molecular Microbiology, 2002, 43, 1603-1614.	2.5	103

#	Article	IF	CITATIONS
91	Identification and Characterization of fhuD1 and fhuD2 , Two Genes Involved in Iron-Hydroxamate Uptake in Staphylococcus aureus. Journal of Bacteriology, 2001, 183, 4994-5000.	2.2	102
92	Identification and Characterization of a Membrane Permease Involved in Iron-Hydroxamate Transport in Staphylococcus aureus. Journal of Bacteriology, 2000, 182, 4394-4400.	2.2	128
93	Distribution of Core Oligosaccharide Types in Lipopolysaccharides from Escherichia coli. Infection and Immunity, 2000, 68, 1116-1124.	2.2	170
94	Characterization of dTDP-4-dehydrorhamnose 3,5-Epimerase and dTDP-4-dehydrorhamnose Reductase, Required for dTDP-1-rhamnose Biosynthesis in Salmonella enterica Serovar Typhimurium LT2. Journal of Biological Chemistry, 1999, 274, 25069-25077.	3.4	111
95	Molecular basis for structural diversity in the core regions of the lipopolysaccharides ofEscherichia coliandSalmonella enterica. Molecular Microbiology, 1998, 30, 221-232.	2.5	339
96	The Assembly System for the Outer Core Portion of R1- and R4-type Lipopolysaccharides of Escherichia coli. Journal of Biological Chemistry, 1998, 273, 29497-29505.	3.4	85
97	The Assembly System for the Lipopolysaccharide R2 Core-type ofEscherichia coli Is a Hybrid of Those Found inEscherichia coli K-12 and Salmonella enterica. Journal of Biological Chemistry, 1998, 273, 8849-8859.	3.4	99
98	Involvement of waaY, waaQ, and waaP in the Modification of Escherichia coliLipopolysaccharide and Their Role in the Formation of a Stable Outer Membrane. Journal of Biological Chemistry, 1998, 273, 26310-26316.	3.4	167
99	The Pseudomonas aeruginosa tonB gene encodes a novel TonB protein. Microbiology (United) Tj ETQq1 1 0.7843	14 rgBT /0 1.8	Overlock 10
100	Cloning and sequence analysis of an EnvCD homologue in <i>Pseudomonas aeruginosa</i> : regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Molecular Microbiology, 1993, 10, 529-544.	2.5	207
101	Pyoverdine-mediated iron transport inPseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. FEMS Microbiology Letters, 1991, 78, 1-6.	1.8	63
102	Iron Acquisition Strategies of Bacterial Pathogens. , 0, , 43-85.		7
103	Staphylococcus, Streptococcus, and Bacillus. , 0, , 387-401.		5