Jubao Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5848783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biological Psychiatry, 2022, 91, 102-117.	1.3	61
2	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
3	Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophrenia Research, 2022, , .	2.0	6
4	BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia. Molecular Neurodegeneration, 2022, 17, 33.	10.8	26
5	Annotating functional effects of non-coding variants in neuropsychiatric cell types by deep transfer learning. PLoS Computational Biology, 2022, 18, e1010011.	3.2	7
6	CCmed: cross-condition mediation analysis for identifying replicable trans-associations mediated by cis-gene expression. Bioinformatics, 2021, 37, 2513-2520.	4.1	4
7	A computational method for direct imputation of cell type-specific expression profiles and cellular compositions from bulk-tissue RNA-Seq in brain disorders. NAR Genomics and Bioinformatics, 2021, 3, lqab056.	3.2	5
8	Sex-specific nicotine sensitization and imprinting of self-administration in rats inform GWAS findings on human addiction phenotypes. Neuropsychopharmacology, 2021, 46, 1746-1756.	5.4	4
9	A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts. Biological Psychiatry, 2021, 90, 611-620.	1.3	103
10	Cell type-specific and cross-population polygenic risk score analyses of MIR137 gene pathway in schizophrenia. IScience, 2021, 24, 102785.	4.1	15
11	Cell-Type-Specific Proteogenomic Signal Diffusion for Integrating Multi-Omics Data Predicts Novel Schizophrenia Risk Genes. Patterns, 2020, 1, 100091.	5.9	5
12	Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science, 2020, 369, 561-565.	12.6	77
13	Publicly Available hiPSC Lines with Extreme Polygenic Risk Scores for Modeling Schizophrenia. Complex Psychiatry, 2020, 6, 68-82.	0.9	18
14	ASCL1- and DLX2-induced GABAergic neurons from hiPSC-derived NPCs. Journal of Neuroscience Methods, 2020, 334, 108548.	2.5	30
15	Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia. Science Advances, 2019, 5, eaau4139.	10.3	59
16	Open Chromatin Profiling Identifies Functional Noncoding Risk Variants In Human Ipsc Model of Psychiatric Disorders. European Neuropsychopharmacology, 2019, 29, S765.	0.7	0
17	RNAseq TRANSCRIPTOME STUDY OF SCHIZOPHRENIA IN THE MGS AFRICAN AMERICAN SAMPLE. European Neuropsychopharmacology, 2019, 29, S874-S875.	0.7	0
18	LANDSCAPE OF ALLELE-SPECIFIC OPEN CHROMATIN IN HUMAN IPSC-DIFFERENTIATED NEURONS AND IT IMPLICATION FOR MENTAL DISORDERS. European Neuropsychopharmacology, 2019, 29, S799-S800.	0.7	3

JUBAO DUAN

#	Article	IF	CITATIONS
19	The Genetic Relevance of Human Induced Pluripotent Stem Cell-Derived Microglia to Alzheimer's Disease and Major Neuropsychiatric Disorders. Molecular Neuropsychiatry, 2019, 5, 85-96.	2.9	9
20	From Schizophrenia Genetics to Disease Biology: Harnessing New Concepts and Technologies. Journal of Psychiatry and Brain Science, 2019, 4, .	0.5	3
21	Open chromatin dynamics reveals stage-specific transcriptional networks in hiPSC-based neurodevelopmental model. Stem Cell Research, 2018, 29, 88-98.	0.7	18
22	Dopamine perturbation of gene co-expression networks reveals differential response in schizophrenia for translational machinery. Translational Psychiatry, 2018, 8, 278.	4.8	8
23	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. American Journal of Human Genetics, 2018, 102, 1185-1194.	6.2	119
24	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
25	Transcriptomic signatures of schizophrenia revealed by dopamine perturbation in an ex vivo model. Translational Psychiatry, 2018, 8, 158.	4.8	15
26	Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers. Human Molecular Genetics, 2017, 26, 3014-3027.	2.9	97
27	Open Chromatin Profiling in hiPSC-Derived Neurons Prioritizes Functional Noncoding Psychiatric Risk Variants and Highlights Neurodevelopmental Loci. Cell Stem Cell, 2017, 21, 305-318.e8.	11.1	106
28	Genome-Wide Association Study of Male Sexual Orientation. Scientific Reports, 2017, 7, 16950.	3.3	44
29	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
30	Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders. PLoS Genetics, 2016, 12, e1005993.	3.5	51
31	Reversal of dendritic phenotypes in 16p11.2 microduplication mouse model neurons by pharmacological targeting of a network hub. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8520-8525.	7.1	61
32	Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data. PLoS Genetics, 2016, 12, e1006493.	3.5	98
33	Somatic Genomics and Clinical Features of Lung Adenocarcinoma: A Retrospective Study. PLoS Medicine, 2016, 13, e1002162.	8.4	148
34	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378.	3.5	331
35	Transcriptome outlier analysis implicates schizophrenia susceptibility genes and enriches putatively functional rare genetic variants. Human Molecular Genetics, 2015, 24, 4674-4685.	2.9	9
36	Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. American Journal of Human Genetics, 2015, 96, 283-294.	6.2	225

JUBAO DUAN

#	Article	IF	CITATIONS
37	Path from schizophrenia genomics to biology: gene regulation and perturbation in neurons derived from induced pluripotent stem cells and genome editing. Neuroscience Bulletin, 2015, 31, 113-127.	2.9	12
38	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American Journal of Human Genetics, 2015, 97, 576-592.	6.2	1,098
39	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. International Journal of Epidemiology, 2015, 44, 1706-1721.	1.9	53
40	A sequence variant in human KALRN impairs protein function and coincides with reduced cortical thickness. Nature Communications, 2014, 5, 4858.	12.8	31
41	A Rare Functional Noncoding Variant at the GWAS-Implicated MIR137/MIR2682 Locus Might Confer Risk to Schizophrenia and Bipolar Disorder. American Journal of Human Genetics, 2014, 95, 744-753.	6.2	91
42	Reciprocal Duplication of the Williams-Beuren Syndrome Deletion on Chromosome 7q11.23 Is Associated with Schizophrenia. Biological Psychiatry, 2014, 75, 371-377.	1.3	66
43	MicroRNA-9 and MicroRNA-326 Regulate Human Dopamine D2 Receptor Expression, and the MicroRNA-mediated Expression Regulation Is Altered by a Genetic Variant. Journal of Biological Chemistry, 2014, 289, 13434-13444.	3.4	53
44	Partitioning Heritability of Regulatory and Cell-Type-Specific Variants across 11 Common Diseases. American Journal of Human Genetics, 2014, 95, 535-552.	6.2	569
45	Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue. Nature Communications, 2014, 5, 3365.	12.8	123
46	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	21.4	1,395
47	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	21.4	2,067
48	Transcriptome study of differential expression in schizophrenia. Human Molecular Genetics, 2013, 22, 5001-5014.	2.9	73
49	Genome-wide survey of interindividual differences of RNA stability in human lymphoblastoid cell lines. Scientific Reports, 2013, 3, 1318.	3.3	66
50	Genome-Wide Association Study of Clinical Dimensions of Schizophrenia: Polygenic Effect on Disorganized Symptoms. American Journal of Psychiatry, 2012, 169, 1309-1317.	7.2	112
51	Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees. American Journal of Psychiatry, 2012, 169, 963-973.	7.2	61
52	Smoking and Genetic Risk Variation Across Populations of <scp>E</scp> uropean, <scp>A</scp> sian, and <scp>A</scp> frican <scp>A</scp> merican Ancestry—A Metaâ€Analysis of Chromosome 15q25. Genetic Epidemiology, 2012, 36, 340-351.	1.3	69
53	Copy Number Variants in Schizophrenia: Confirmation of Five Previous Findings and New Evidence for 3q29 Microdeletions and VIPR2 Duplications. American Journal of Psychiatry, 2011, 168, 302-316.	7.2	398
54	Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature, 2010, 467, 832-838.	27.8	1,789

JUBAO DUAN

#	Article	IF	CITATIONS
55	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	21.4	2,634
56	The Internet-Based MGS2 Control Sample: Self Report of Mental Illness. American Journal of Psychiatry, 2010, 167, 854-865.	7.2	48
57	Genome-wide approaches to schizophrenia. Brain Research Bulletin, 2010, 83, 93-102.	3.0	47
58	Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 2009, 460, 753-757.	27.8	1,063
59	Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nature Genetics, 2009, 41, 708-711.	21.4	445
60	Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 2008, 40, 1053-1055.	21.4	977
61	No Significant Association of 14 Candidate Genes With Schizophrenia in a Large European Ancestry Sample: Implications for Psychiatric Genetics. American Journal of Psychiatry, 2008, 165, 497-506.	7.2	323
62	<i>DTNBP1 (Dystrobrevin Binding Protein 1)</i> and Schizophrenia: Association Evidence in the 3′ End of the Gene. Human Heredity, 2007, 64, 97-106.	0.8	35
63	Genomewide Linkage Scan of 409 European-Ancestry and African American Families with Schizophrenia: Suggestive Evidence of Linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the Combined Sample. American Journal of Human Genetics, 2006, 78, 315-333.	6.2	141
64	<i>Neuregulin 1</i> (<i>NRG1</i>) and schizophrenia: analysis of a US family sample and the evidence in the balance. Psychological Medicine, 2005, 35, 1599-1610.	4.5	46
65	Polymorphisms in the Trace Amine Receptor 4 (TRAR4) Gene on Chromosome 6q23.2 Are Associated with Susceptibility to Schizophrenia. American Journal of Human Genetics, 2004, 75, 624-638.	6.2	101
66	Mammalian Mutation Pressure, Synonymous Codon Choice, and mRNA Degradation. Journal of Molecular Evolution, 2003, 57, 694-701.	1.8	113
67	Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Human Molecular Genetics, 2003, 12, 205-216.	2.9	800
68	DNA variation and psychopharmacology of the human serotonin receptor 1B(HTR1B) gene. Pharmacogenomics, 2002, 3, 745-762.	1.3	47
69	Single-Step Method of Total RNA Isolation by Sodium Dodecyl Sulfate/Phenol Extraction from Cultured Cells. Analytical Biochemistry, 1997, 251, 291-292.	2.4	11