Yingfeng Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584776/publications.pdf

Version: 2024-02-01

		218677	182427
79	2,854 citations	26	51
papers	citations	h-index	g-index
90	90	90	2042
80	80	80	3943
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Giant Surfactant of Polystyreneâ^'(Carboxylic Acid-Functionalized Polyhedral Oligomeric) Tj ETQq1 1 0.784314 r the American Chemical Society, 2010, 132, 16741-16744.	gBT /Overl 13.7	lock 10 Tf 50 235
2	Fullerene derivative anchored SnO ₂ for high-performance perovskite solar cells. Energy and Environmental Science, 2018, 11, 3463-3471.	30.8	205
3	Self-Assembled Nanostructure of a Novel Coilâ°Rod Diblock Copolymer in Dilute Solution. Journal of the American Chemical Society, 2000, 122, 10201-10205.	13.7	187
4	Perforated Layer Structures in Liquid Crystalline Rodâ^'Coil Block Copolymers. Journal of the American Chemical Society, 2005, 127, 15481-15490.	13.7	124
5	"Clicking―Fullerene with Polymers: Synthesis of [60]Fullerene End-Capped Polystyrene. Macromolecules, 2008, 41, 515-517.	4.8	118
6	2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Advances, 2019, 1, 395-402.	4.6	117
7	N- and O-doped carbonaceous nanotubes from polypyrrole for potential application in high-performance capacitance. Journal of Power Sources, 2014, 247, 660-666.	7.8	100
8	A Porphyrin–Fullerene Dyad with a Supramolecular "Double able―Structure as a Novel Electron Acceptor for Bulk Heterojunction Polymer Solar Cells. Advanced Materials, 2011, 23, 2951-2956.	21.0	83
9	A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients. Chemical Communications, 2018, 54, 3126-3129.	4.1	79
10	Controlling Blend Film Morphology by Varying Alkyl Side Chain in Highly Coplanar Donor–Acceptor Copolymers for Photovoltaic Application. Macromolecules, 2011, 44, 6370-6381.	4.8	73
11	Reducing Energy Disorder in Perovskite Solar Cells by Chelation. Journal of the American Chemical Society, 2022, 144, 5400-5410.	13.7	72
12	Synthesis and characterization of poly(ethylene terephthalate-co-1,4-cyclohexanedimethylene) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 302
13	Hierarchical structure and polymorphism of a sphere-cubic shape amphiphile based on a polyhedral oligomeric silsesquioxane–[60]fullerene conjugate. Journal of Materials Chemistry, 2011, 21, 14240.	6.7	67
14	Confined Assembly of Hollow Carbon Spheres in Carbonaceous Nanotube: A Spheresâ€inâ€Tube Carbon Nanostructure with Hierarchical Porosity for Highâ€Performance Supercapacitor. Small, 2018, 14, e1704015.	10.0	64
15	Supramolecular [60]Fullerene Liquid Crystals Formed By Selfâ€Organized Twoâ€Dimensional Crystals. Angewandte Chemie - International Edition, 2015, 54, 114-117.	13.8	56
16	Synthesis and characterization of polymer grafted graphene oxide sheets using a Ce(IV)/HNO3 redox system in an aqueous solution. Carbon, 2013, 53, 269-276.	10.3	54
17	Self-Assembled Nanostructures of Rodâ^'Coil Diblock Copolymers with Different Rod Lengths. Macromolecules, 2003, 36, 6565-6569.	4.8	49
18	Graphene oxide/poly (N-isopropylacrylamide) hybrid film-based near-infrared light-driven bilayer actuators with shape memory effect. Sensors and Actuators B: Chemical, 2018, 255, 2971-2978.	7.8	48

4.8

20

#	Article	IF	CITATIONS
19	Liquid Crystalline and Shear-Induced Properties of an Aqueous Solution of Graphene Oxide Sheets. Langmuir, 2013, 29, 8103-8107.	3.5	46
20	N- and O-doped hollow carbonaceous spheres with hierarchical porous structure for potential application in high-performance capacitance. Journal of Power Sources, 2017, 363, 356-364.	7.8	45
21	Glass transition temperature of cyclic polystyrene and the linear counterpart contamination effect. Polymer, 2019, 170, 198-203.	3.8	45
22	Nitroxideâ€mediated â€~living' free radical synthesis of novel rod–coil diblock copolymers with polystyrene and mesogenâ€jacketed liquidâ€crystal polymer segments. Polymer International, 2000, 49, 243-247.	3.1	44
23	"Clicking―graphite oxide sheets with well-defined polystyrenes: A new Strategy to control the layer thickness. Polymer, 2011, 52, 3046-3052.	3.8	44
24	Synthesis of Metallopolymers and Direct Visualization of the Single Polymer Chain. Journal of the American Chemical Society, 2020, 142, 6196-6205.	13.7	38
25	One Pot, One Feeding Step, Two-Stage Polymerization Synthesis and Characterization of (PTT- <i>b</i> -PTMO- <i>b</i> -PTT) _{<i>n</i>} Multiblock Copolymers. Macromolecules, 2013, 46, 7274-7281.	4.8	34
26	Synthesis and characterization of well-defined poly(l-lactide) functionalized graphene oxide sheets with high grafting ratio prepared through click chemistry and supramolecular interactions. Polymer, 2014, 55, 4619-4626.	3.8	27
27	Acceptor–donor–acceptor-based small molecules with varied crystallinity: processing additive-induced nanofibril in blend film for photovoltaic applications. Nanoscale, 2013, 5, 9536.	5.6	25
28	One pot synthesis and characterization of novel poly(ether ester) mutiblock copolymers containing poly(tetramethylene oxide) and poly(ethylene terephthalate). Polymer Chemistry, 2014, 5, 945-954.	3.9	25
29	Poly(butylene terephthalate)-b-poly(ethylene oxide) alternating multiblock copolymers: Synthesis and application in solid polymer electrolytes. Polymer, 2017, 128, 188-199.	3.8	25
30	A one pot facile synthesis of Poly(butylene terephthalate)-block-poly(tetramethylene oxide) alternative multiblock copolymers via PROP method. Polymer, 2016, 107, 29-36.	3.8	24
31	Ionic Liquid-Grafted Polyamide 6 by Radiation-Induced Grafting: New Strategy To Prepare Covalently Bonded Ion-Containing Polymers and their Application as Functional Fibers. ACS Applied Materials & Interfaces, 2019, 11, 5462-5475.	8.0	24
32	Hole extraction layer utilizing well defined graphene oxide with multiple functionalities for high-performance bulk heterojunction solar cells. Organic Electronics, 2014, 15, 2868-2875.	2.6	23
33	Incorporating Pendent Fullerenes with High Refractive Index Backbones: A Conjunction Effect Method for High Refractive Index Polymers. Macromolecules, 2015, 48, 8480-8488.	4.8	23
34	A spheres-in-tube carbonaceous nanostructure for high-capacity and high-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 14885-14893.	10.3	22
35	Side-chain fullerene polyesters: a new class of high refractive index polymers. Materials Horizons, 2014, 1, 247-250.	12.2	21
9.6	Effect of Block Number and Weight Fraction on the Structure and Properties of Poly(butylene) Tj ETQq0 0 0 rgB	T /Overlocl	k 10 Tf 50 67

3

2021, 54, 2703-2710.

36

#	Article	IF	Citations
37	Title is missing!. Journal of Polymer Research, 2002, 9, 11-15.	2.4	19
38	From ultratough artificial nacre to elastomer: Poly(n-butyl acrylate) grafted graphene oxide nanocomposites. Composites Part A: Applied Science and Manufacturing, 2016, 88, 156-164.	7.6	19
39	Shackling Effect Induced Property Differences in Metallo-Supramolecular Polymers. Journal of the American Chemical Society, 2017, 139, 14364-14367.	13.7	19
40	Precisely controlled growth of poly(ethyl acrylate) chains on graphene oxide and the formation of layered structure with improved mechanical properties. Composites Part A: Applied Science and Manufacturing, 2017, 93, 100-106.	7.6	19
41	PBT-b-PEO-b-PBT triblock copolymers: Synthesis, characterization andÂdouble-crystalline properties. Polymer, 2013, 54, 6725-6731.	3.8	18
42	Supramolecular and Physically Double-Cross-Linked Network Strategy toward Strong and Tough Elastic Fibers. ACS Macro Letters, 2020, 9, 1655-1661.	4.8	18
43	Controlled organization of self-assembled rod-coil block copolymer micelles. Polymer, 2009, 50, 5170-5174.	3.8	17
44	Solution-processable tetrazine and oligothiophene based linear A–D–A small molecules: Synthesis, hierarchical structure and photovoltaic properties. Organic Electronics, 2013, 14, 1424-1434.	2.6	17
45	Conjugated moiety effect on blend film phase separation and photovoltaic properties of benzo[1,2-b:4,5-b′]dithiophene-containing coplanar donor–acceptor copolymers. Solar Energy Materials and Solar Cells, 2013, 108, 136-145.	6.2	17
46	Three-dimensional Interconnected Nanocarbon Hybrid Prepared by One-pot Synthesis Method with Polypyrrole-based Nanotube and Graphene and the Application in High-performance Capacitance. Electrochimica Acta, 2014, 146, 386-394.	5.2	17
47	Synergistic toughening of bioinspired artificial nacre by polystyrene grafted graphene oxide. RSC Advances, 2015, 5, 28085-28091.	3.6	17
48	Water transport facilitated by carbon nanotubes enables a hygroresponsive actuator with negative hydrotaxis. Nanoscale, 2020, 12, 6104-6110.	5.6	17
49	A fullerene dyad with a tri(octyloxy)benzene moiety induced efficient nanoscale active layer for the poly(3-hexylthiophene)-based bulk heterojunction solar cell applications. Chemical Communications, 2013, 49, 4917.	4.1	16
50	Unique Supramolecular Liquidâ€Crystal Phases with Different Twoâ€Dimensional Crystal Layers. Angewandte Chemie - International Edition, 2018, 57, 13454-13458.	13.8	16
51	A Cascade Polymerization Method for the Property Modification of Poly(butylene terephthalate) by the Incorporation of Isosorbide. ACS Applied Polymer Materials, 2019, 1, 2313-2321.	4.4	16
52	A nearly quantitative synthetic approach towards monocyclic polystyrenes and the solvent, concentration and molecular weight effect on cyclic yield. Polymer, 2016, 101, 379-387.	3.8	15
53	Synthesis of poly(butylene terephthalate)- block -poly(ethylene oxide)- block -poly(propylene oxide)- block -poly(ethylene oxide) multiblock terpolymers via a facile PROP method. Polymer, 2017, 130, 199-208.	3.8	15
54	A green cascade polymerization method for the facile synthesis of sustainable poly(butylene-co-decylene terephthalate) copolymers. Polymer, 2019, 178, 121591.	3.8	15

#	Article	IF	CITATIONS
55	Synthesis and Solution Self-Assembly Properties of Cyclic Rod–Coil Diblock Copolymers. ACS Macro Letters, 2019, 8, 1564-1569.	4.8	15
56	Frustrated Layered Self-Assembly Induced Superlattice from Two-Dimensional Nanosheets. Nano Letters, 2020, 20, 8647-8653.	9.1	15
57	Preparation of low molecular weight cyclic polystyrenes with high purity via liquid chromatography at the critical condition. Polymer, 2018, 135, 279-284.	3.8	14
58	Buckled Amorphous Hollow Carbon Spheres: Facile Fabrication, Buckling Process, and Applications as Electrode Materials for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30116-30124.	8.0	14
59	Rapid synthesis of sustainable poly(ethylene 2,5-furandicarboxylate)-block-poly(tetramethylene oxide) multiblock copolymers with tailor-made properties via a cascade polymerization route. Polymer, 2021, 237, 124313.	3.8	14
60	PROP: an in situ cascade polymerization method for the facile synthesis of polyesters. Polymer Chemistry, 2017, 8, 1953-1962.	3.9	13
61	Biodegradable all polyester-based multiblock copolymer elastomers with controlled properties. Polymer Chemistry, 2021, 12, 1837-1845.	3.9	12
62	Effect of Fullerene Volume Fraction on Twoâ€Dimensional Crystalâ€Constructed Supramolecular Liquid Crystals. Chemistry - an Asian Journal, 2019, 14, 125-129.	3.3	10
63	Supramolecular Chemistry in the Formation of Selfâ€Assembled Nanostructures from a Highâ€Molecularâ€Weight Rod–Coil Block Copolymer. Macromolecular Rapid Communications, 2014, 35, 1795-1800.	3.9	9
64	Controlling the enthalpy–entropy competition in supramolecular fullerene liquid crystals by tuning the flexible chain length. Chemical Communications, 2017, 53, 8336-8339.	4.1	9
65	Mechanism study and molecular design in controlled/"living―radical polymerization. Science China Chemistry, 2010, 53, 1605-1619.	8.2	6
66	A synthetic approach towards micron-sized smectic liquid crystal capsules via the diffusion controlled swelling method. Polymer Chemistry, 2015, 6, 2551-2559.	3.9	6
67	Influence of liquid crystalline formation on the phase behavior of side-chain liquid crystalline block copolymers. Polymer, 2015, 61, 147-154.	3.8	6
68	Hygroresponsive Torsional Yarns and Actuators Based on Cascade Amplification of the Deformation. Macromolecular Materials and Engineering, 2021, 306, 2000822.	3.6	6
69	The non-free draining effect for small cyclics in solution. Polymer, 2021, 213, 123202.	3.8	6
70	A cascade strategy towards the direct synthesis of green polyesters with versatile functional groups. Polymer Chemistry, 0, , .	3.9	5
71	Self-adaptive multiblock-copolymer-based hybrid solid-state electrolyte for safe and stable lithium-metal battery. Electrochimica Acta, 2021, 371, 137702.	5.2	5
72	Controlling Morphology of Active Layer by Tuning Coplanarity of the Centrality in Acceptorâ€Donorâ€Acceptor Small Molecules for Photovoltaic Application. Chinese Journal of Chemistry, 2013, 31, 1439-1448.	4.9	4

YINGFENG Tu

#	Article	IF	CITATIONS
73	Synthesis and ordered aggregation in water of a blue light-emitting PEO-PHP-PEO triblock oligomer. Science Bulletin, 2003, 48, 1525-1530.	1.7	3
74	Investigating the effect of mono―and multivalent counterions on the conformation of poly(styrenesulfonic acid) by nanopores. Electrophoresis, 2019, 40, 2180-2185.	2.4	3
75	Unique Supramolecular Liquid rystal Phases with Different Twoâ€Dimensional Crystal Layers. Angewandte Chemie, 2018, 130, 13642-13646.	2.0	2
76	Surface Polymerization and Controlled Pyrolysis: Tailorable Synthesis of Bumpy Hollow Carbon Spheres for Energy Storage. Langmuir, 2021, 37, 4007-4015.	3.5	2
77	Controllable synthesis of nitrogen-containing core-shell carbon spheres with a gap for enhanced lithium-ions storage. Solid State Ionics, 2022, 382, 115961.	2.7	1
78	Fullerene Liquid Crystals., 2018,, 1-23.		0
79	Fullerene Liquid Crystals. Polymers and Polymeric Composites, 2020, , 149-171.	0.6	0