
Terrance J Kavanagh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5847754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glutathione and Thioredoxin Antioxidant Pathways Synergize to Drive Cancer Initiation and Progression. Cancer Cell, 2015, 27, 211-222.	16.8	748
2	Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Molecular Aspects of Medicine, 2009, 30, 86-98.	6.4	330
3	Fluorescence-based microtiter plate assay for glutamate–cysteine ligase activity. Analytical Biochemistry, 2003, 318, 175-180.	2.4	246
4	Glutamate Cysteine Ligase Modifier Subunit Deficiency and Gender as Determinants of Acetaminophen-Induced Hepatotoxicity in Mice. Toxicological Sciences, 2007, 99, 628-636.	3.1	156
5	De novo synthesis of glutathione is required for both entry into and progression through the cell cycle. Journal of Cellular Physiology, 1995, 163, 555-560.	4.1	155
6	Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell, 2013, 12, 763-771.	6.7	146
7	Interlaboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 2013, 121, 676-682.	6.0	121
8	Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice. Free Radical Biology and Medicine, 2019, 134, 268-281.	2.9	101
9	Neurotoxicity of a polybrominated diphenyl ether mixture (DE-71) in mouse neurons and astrocytes is modulated by intracellular glutathione levels. Toxicology and Applied Pharmacology, 2008, 232, 161-168.	2.8	89
10	Rapid Activation of Glutamate Cysteine Ligase following Oxidative Stress. Journal of Biological Chemistry, 2010, 285, 16116-16124.	3.4	87
11	Proliferative capacity of human peripheral blood lymphocytes sorted on the basis of glutathione content. Journal of Cellular Physiology, 1990, 145, 472-480.	4.1	68
12	Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice. Laboratory Investigation, 2010, 90, 1704-1717.	3.7	67
13	The brominated flame retardant BDE-47 causes oxidative stress and apoptotic cell death in vitro and in vivo in mice. NeuroToxicology, 2015, 48, 68-76.	3.0	63
14	Glutamate Cysteine Ligase Modifier Subunit (Gclm) Null Mice Have Increased Ovarian Oxidative Stress and Accelerated Age-Related Ovarian Failure. Endocrinology, 2015, 156, 3329-3343.	2.8	61
15	<i>In Vitro</i> Toxicity Assessment of Amphiphillic Polymer-Coated CdSe/ZnS Quantum Dots in Two Human Liver Cell Models. ACS Nano, 2012, 6, 9475-9484.	14.6	58
16	Induction of glutamate-cysteine ligase ($\hat{1}^3$ -glutamylcysteine synthetase) in the brains of adult female mice subchronically exposed to methylmercury. Toxicology Letters, 1999, 110, 1-9.	0.8	56
17	Acetaminophen-induced Liver Injury Is Attenuated in Male Glutamate-cysteine Ligase Transgenic Mice. Journal of Biological Chemistry, 2006, 281, 28865-28875.	3.4	56
18	The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress. Antioxidants and Redox Signaling, 2018, 28, 773-796.	5.4	55

TERRANCE J KAVANAGH

#	Article	IF	CITATIONS
19	Glutathione as a Biomarker in Parkinson's Disease: Associations with Aging and Disease Severity. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-6.	4.0	51
20	Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6. Redox Biology, 2014, 2, 377-387.	9.0	49
21	Comparative behavioral toxicology with two common larval fish models: Exploring relationships among modes of action and locomotor responses. Science of the Total Environment, 2018, 640-641, 1587-1600.	8.0	49
22	Metabolism of doxorubicin to the cardiotoxic metabolite doxorubicinol is increased in a mouse model of chronic glutathione deficiency: A potential role for carbonyl reductase 3. Chemico-Biological Interactions, 2015, 234, 154-161.	4.0	47
23	Modulating CSH Synthesis Using Glutamate Cysteine Ligase Transgenic and Gene-Targeted Mice. Drug Metabolism Reviews, 2008, 40, 465-477.	3.6	45
24	Glutamate-cysteine ligase attenuates TNF-induced mitochondrial injury and apoptosis. Free Radical Biology and Medicine, 2004, 37, 632-642.	2.9	44
25	Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress. Toxicology and Applied Pharmacology, 2015, 283, 198-209.	2.8	44
26	Central nervous system uptake of intranasal glutathione in Parkinson's disease. Npj Parkinson's Disease, 2016, 2, 16002.	5.3	43
27	Reduced Glutathione Level Promotes Epithelial-Mesenchymal Transition in Lens Epithelial Cells via a Wnt/β-Catenin–Mediated Pathway. American Journal of Pathology, 2017, 187, 2399-2412.	3.8	38
28	Toxicity and oxidative stress induced by semiconducting polymer dots in RAW264.7 mouse macrophages. Nanoscale, 2015, 7, 10085-10093.	5.6	37
29	Current Status and Future Challenges in Molecular Design for Reduced Hazard. ACS Sustainable Chemistry and Engineering, 2016, 4, 5900-5906.	6.7	35
30	Characterization of rat or human hepatocytes cultured in microphysiological systems (MPS) to identify hepatotoxicity. Toxicology in Vitro, 2017, 40, 170-183.	2.4	34
31	Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains. Toxicology and Applied Pharmacology, 2015, 289, 240-250.	2.8	33
32	The safer chemical design game. Gamification of green chemistry and safer chemical design concepts for high school and undergraduate students. Green Chemistry Letters and Reviews, 2018, 11, 103-110.	4.7	32
33	Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages. Nanotoxicology, 2015, 9, 336-343.	3.0	31
34	Heterozygosity in the glutathione synthesis geneGclmincreases sensitivity to diesel exhaust particulate induced lung inflammation in mice. Inhalation Toxicology, 2011, 23, 724-735.	1.6	30
35	Glutathione (GSH) and the GSH synthesis gene Gclm modulate vascular reactivity in mice. Free Radical Biology and Medicine, 2012, 53, 1264-1278.	2.9	30
36	Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions. Air Quality, Atmosphere and Health, 2015, 8, 507-519.	3.3	30

TERRANCE J KAVANAGH

#	Article	IF	CITATIONS
37	The Glutathione Synthesis Gene Gclm Modulates Amphiphilic Polymer-Coated CdSe/ZnS Quantum Dot–Induced Lung Inflammation in Mice. PLoS ONE, 2013, 8, e64165.	2.5	29
38	Genetic determinants of susceptibility to silver nanoparticleâ€induced acute lung inflammation in mice. FASEB Journal, 2017, 31, 4600-4611.	0.5	28
39	Toward the Design of Less Hazardous Chemicals: Exploring Comparative Oxidative Stress in Two Common Animal Models. Chemical Research in Toxicology, 2017, 30, 893-904.	3.3	26
40	Heme oxygenase expression as a biomarker of exposure to amphiphilic polymer-coated CdSe/ZnS quantum dots. Nanotoxicology, 2013, 7, 181-191.	3.0	20
41	Direct evidence of intercellular sharing of glutathione via metabolic cooperation. Journal of Cellular Physiology, 1988, 137, 353-359.	4.1	19
42	Using Domestic and Free-Ranging Arctic Canid Models for Environmental Molecular Toxicology Research. Environmental Science & Technology, 2016, 50, 1990-1999.	10.0	18
43	Quantification of Low-Level Drug Effects Using Real-Time, <i>in vitro</i> Measurement of Oxygen Consumption Rate. Toxicological Sciences, 2015, 148, 594-602.	3.1	17
44	The Molecular Design Research Network. Toxicological Sciences, 2018, 161, 241-248.	3.1	17
45	Elamipretide (SS-31) treatment attenuates age-associated post-translational modifications of heart proteins. GeroScience, 2021, 43, 2395-2412.	4.6	17
46	Direct determination of functional activity of cytochrome pâ€4501A1 and nadph DTâ€diaphorase in hepatoma cell lines using noninvasive scanning laser cytometry. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1993, 40, 177-194.	2.3	16
47	Using primary organotypic mouse midbrain cultures to examine developmental neurotoxicity of silver nanoparticles across two genetic strains. Toxicology and Applied Pharmacology, 2018, 354, 215-224.	2.8	14
48	In vitro to in vivo benchmark dose comparisons to inform risk assessment of quantum dot nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1507.	6.1	14
49	Protein tyrosine nitration of mitochondrial carbamoyl phosphate synthetase 1 and its functional consequences. Biochemical and Biophysical Research Communications, 2012, 420, 54-60.	2.1	13
50	Quantum dots and mouse strain influence house dust mite-induced allergic airway disease. Toxicology and Applied Pharmacology, 2019, 368, 55-62.	2.8	13
51	The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis. Redox Biology, 2016, 9, 264-275.	9.0	12
52	Quantum dot induced acute changes in lung mechanics are mouse strain dependent. Inhalation Toxicology, 2018, 30, 397-403.	1.6	12
53	Carbonyl Reductase 1 Plays a Significant Role in Converting Doxorubicin to Cardiotoxic Doxorubicinol in Mouse Liver, but the Majority of the Doxorubicinol-Forming Activity Remains Unidentified. Drug Metabolism and Disposition, 2020, 48, 187-197.	3.3	12
54	Vitamin C is a source of oxoaldehyde and glycative stress in ageâ€related cataract and neurodegenerative diseases. Aging Cell, 2020, 19, e13176.	6.7	12

TERRANCE J KAVANAGH

#	Article	IF	CITATIONS
55	HPLC â€Based Assays for Enzymes of Glutathione Biosynthesis. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 1999, 00, Unit6.5.	1.1	11
56	Silver nanoparticles alter epithelial basement membrane integrity, cell adhesion molecule expression, and TGF-β1 secretion. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102070.	3.3	10
57	Neonatal Exposure to BPA, BDE-99, and PCB Produces Persistent Changes in Hepatic Transcriptome Associated With Gut Dysbiosis in Adult Mouse Livers. Toxicological Sciences, 2021, 184, 83-103.	3.1	10
58	Persistence of improved glucose homeostasis in Gclm null mice with age and cadmium treatment. Redox Biology, 2022, 49, 102213.	9.0	9
59	Kinetics of Glutathione Depletion and Antioxidant Gene Expression as Indicators of Chemical Modes of Action Assessed <i>in Vitro</i> in Mouse Hepatocytes with Enhanced Glutathione Synthesis. Chemical Research in Toxicology, 2019, 32, 421-436.	3.3	8
60	CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish. Chemical Research in Toxicology, 2020, 33, 426-435.	3.3	8
61	Toward Less Hazardous Industrial Compounds: Coupling Quantum Mechanical Computations, Biomarker Responses, and Behavioral Profiles To Identify Bioactivity of SN2 Electrophiles in Alternative Vertebrate Models. Chemical Research in Toxicology, 2020, 33, 367-380.	3.3	8
62	p53 Contributes to Differentiating Gene Expression following Exposure to Acetaminophen and Its Less Hepatotoxic Regioisomer Both <i>In Vitro</i> and <i>In Vivo</i> . Gene Regulation and Systems Biology, 2015, 9, GRSB.S25388.	2.3	7
63	Sustained Glutathione Deficiency Interferes with the Liver Response to TNF-α and Liver Regeneration after Partial Hepatectomy in Mice. Journal of Liver: Disease & Transplantation, 2013, 1, .	0.0	7
64	Probenicid inhibition of fluorescence extrusion after MCB-staining of rat-1 fibroblasts. Cytometry, 1996, 23, 78-81.	1.8	6
65	Stromelysin-2 (MMP-10) facilitates clearance and moderates inflammation and cell death following lung exposure to long multiwalled carbon nanotubes. International Journal of Nanomedicine, 2017, Volume 12, 1019-1031.	6.7	6
66	Domestic cats as environmental lead sentinels in low-income populations: a One Health pilot study sampling the fur of animals presented to a high-volume spay/neuter clinic. Environmental Science and Pollution Research, 2021, 28, 57925-57938.	5.3	6
67	Benzalkonium Chloride Disinfectants Induce Apoptosis, Inhibit Proliferation, and Activate the Integrated Stress Response in a 3-D <i>in Vitro</i> Model of Neurodevelopment. Chemical Research in Toxicology, 2021, 34, 1265-1274.	3.3	6
68	The Effects of Gene × Environment Interactions on Silver Nanoparticle Toxicity in the Respiratory System. Chemical Research in Toxicology, 2019, 32, 952-968.	3.3	5
69	In Vivo Approaches to Assessing the Toxicity of Quantum Dots. Methods in Molecular Biology, 2014, 1199, 179-190.	0.9	5
70	The Effects of Genotype × Phenotype Interactions on Transcriptional Response to Silver Nanoparticle Toxicity in Organotypic Cultures of Murine Tracheal Epithelial Cells. Toxicological Sciences, 2020, 173, 131-143.	3.1	4
71	Longitudinal measures of phthalate exposure and asthma exacerbation in a rural agricultural cohort of Latino children in Yakima Valley, Washington. International Journal of Hygiene and Environmental Health, 2022, 243, 113954.	4.3	4
72	The effects of genotype × phenotype interactions on silver nanoparticle toxicity in organotypic cultures of murine tracheal epithelial cells. Nanotoxicology, 2020, 14, 908-928.	3.0	1

#	ARTICLE	IF	CITATIONS
73	The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1708.	6.1	1
74	Gclm Null Mice have Drastically Increased Angiogenic Potential. FASEB Journal, 2009, 23, 592.12.	0.5	0
75	Neonatal Oral Exposure to Environmental Chemicals Produces Persistent Dysbiosis Corresponding to Hepatic Epigenetic Reprogramming in Adult Mice. FASEB Journal, 2019, 33, lb23.	0.5	0