Christian E Badr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5847524/publications.pdf

Version: 2024-02-01

430874 477307 1,716 37 18 29 citations h-index g-index papers 41 41 41 6021 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nature Communications, 2015, 6, 7029.	12.8	449
2	A secreted luciferase for ex vivo monitoring of in vivo processes. Nature Methods, 2008, 5, 171-173.	19.0	263
3	Bioluminescence imaging: progress and applications. Trends in Biotechnology, 2011, 29, 624-633.	9.3	240
4	A Highly Sensitive Assay for Monitoring the Secretory Pathway and ER Stress. PLoS ONE, 2007, 2, e571.	2. 5	123
5	Triple Bioluminescence Imaging for In Vivo Monitoring of Cellular Processes. Molecular Therapy - Nucleic Acids, 2013, 2, e99.	5.1	77
6	Stearoyl CoA Desaturase Is Essential for Regulation of Endoplasmic Reticulum Homeostasis and Tumor Growth in Glioblastoma Cancer StemÂCells. Stem Cell Reports, 2019, 12, 712-727.	4.8	62
7	Real-Time Monitoring of Nuclear Factor κB Activity in Cultured Cells and in Animal Models. Molecular Imaging, 2009, 8, 7290.2009.00026.	1.4	56
8	Lanatoside C sensitizes glioblastoma cells to tumor necrosis factor–related apoptosis-inducing ligand and induces an alternative cell death pathway. Neuro-Oncology, 2011, 13, 1213-1224.	1.2	52
9	Real-time monitoring of nuclear factor kappaB activity in cultured cells and in animal models. Molecular Imaging, 2009, 8, 278-90.	1.4	49
10	Bioluminescence Imaging: Basics and Practical Limitations. Methods in Molecular Biology, 2014, 1098, 1-18.	0.9	48
11	Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models. Neuro-Oncology, 2017, 19, now253.	1.2	35
12	Metabolic heterogeneity and adaptability in brain tumors. Cellular and Molecular Life Sciences, 2020, 77, 5101-5119.	5.4	34
13	Functional Drug Screening Assay Reveals Potential Glioma Therapeutics. Assay and Drug Development Technologies, 2011, 9, 281-289.	1.2	31
14	Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery. Journal of Neuro-Oncology, 2018, 139, 293-305.	2.9	24
15	Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model. Molecular Therapy - Oncolytics, 2016, 3, 16017.	4.4	21
16	Targeting Cancer Cells With the Natural Compound Obtusaquinone. Journal of the National Cancer Institute, 2013, 105, 643-653.	6.3	19
17	Systemic Anticancer Neural Stem Cells in Combination with a Cardiac Glycoside for Glioblastoma Therapy. Stem Cells, 2014, 32, 2021-2032.	3.2	18
18	Intracranial AAVâ€sTRAIL combined with lanatoside C prolongs survival in an orthotopic xenograft mouse model ofÂinvasive glioblastoma. Molecular Oncology, 2016, 10, 625-634.	4.6	18

#	Article	IF	CITATIONS
19	Sustained NF-κB-STAT3 signaling promotes resistance to Smac mimetics in Glioma stem-like cells but creates a vulnerability to EZH2 inhibition. Cell Death Discovery, 2019, 5, 72.	4.7	18
20	Obtusaquinone: A Cysteine-Modifying Compound That Targets Keap1 for Degradation. ACS Chemical Biology, 2020, 15, 1445-1454.	3.4	18
21	Suicidal gene therapy in an NF-κB-controlled tumor environment as monitored by a secreted blood reporter. Gene Therapy, 2011, 18, 445-451.	4.5	15
22	Targeting of HER/ErbB family proteins using broad spectrum Sec61 inhibitors coibamide A and apratoxin A. Biochemical Pharmacology, 2021, 183, 114317.	4.4	13
23	A multiplexed bioluminescent reporter for sensitive and non-invasive tracking of DNA double strand break repair dynamics in vitro and in vivo. Nucleic Acids Research, 2020, 48, e100-e100.	14.5	10
24	A TNF-NF-κB-STAT3 loop triggers resistance of glioma-stem-like cells to Smac mimetics while sensitizing to EZH2 inhibitors. Cell Death and Disease, 2019, 10, 268.	6.3	8
25	Multiplexed bioluminescence-mediated tracking of DNA double-strand break repairs in vitro and in vivo. Nature Protocols, 2021, 16, 3933-3953.	12.0	6
26	An allosteric inhibitor of SHP2 effectively targets PDGFRα-driven glioblastoma. Neuro-Oncology, 2019, 21, 1348-1349.	1.2	4
27	Intranasal delivery of experimental compounds in orthotopic brain tumor mouse models. STAR Protocols, 2021, 2, 100290.	1.2	2
28	Cell-Based Bioluminescence Screening Assays. Methods in Molecular Biology, 2014, 1098, 185-195.	0.9	1
29	Gaussia luciferase blood level as an index of cell growth and proliferation. Protocol Exchange, 0, , .	0.3	1
30	Orthotopic brain tumor models derived from glioblastoma stem-like cells. Methods in Cell Biology, 2022, , .	1.1	1
31	956. Imaging of Radiation-Inducible Promoters Using a Naturally Secreted Luciferase from the Marine Copepod Gaussia princeps. Molecular Therapy, 2006, 13, S369.	8.2	0
32	STEM-18CULTURE CONDITION-INDUCED MESENCHYMAL TRANSITION IN PATIENT-DERIVED GLIOBLASTOMA STEM CELLS. Neuro-Oncology, 2015, 17, v211.5-v212.	1.2	0
33	STEM-16. TARGETING THE SCF UBIQUITIN LIGASE IN GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi229-vi229.	1.2	O
34	DDRE-11. TARGETING FATTY ACID BIOSYNTHESIS IN GLIOBLASTOMA. Neuro-Oncology Advances, 2021, 3, i8-i8.	0.7	0
35	DDRE-05. STEAROYL COA DESATURASE IS ESSENTIAL FOR REGULATION OF ENDOPLASMIC RETICULUM HOMEOSTASIS AND TUMOR GROWTH IN GLIOBLASTOMA CANCER STEM CELLS. Neuro-Oncology Advances, 2021, 3, i7-i7.	0.7	O
36	Abstract A254: Systemic injection of human neural stem cells expressing anti-cancer agent targets invasive gliomas and induces tumor regression in combination with a cardiac glycoside, 2013, , .		0

#	Article	IF	CITATIONS
37	EXTH-23. PRECLINICAL EFFICACY OF A TARGETED, BRAIN PENETRANT INHIBITOR OF FATTY ACID DESATURATION IN GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi168-vi168.	1.2	0