Susanna Tomasoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5847368/publications.pdf

Version: 2024-02-01

54 papers

3,845 citations

147801 31 h-index 197818 49 g-index

54 all docs 54 docs citations

54 times ranked 4876 citing authors

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cells Are Renotropic, Helping to Repair the Kidney and Improve Function in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2004, 15, 1794-1804.	6.1	690
2	Transfer of Growth Factor Receptor mRNA Via Exosomes Unravels the Regenerative Effect of Mesenchymal Stem Cells. Stem Cells and Development, 2013, 22, 772-780.	2.1	300
3	Insulin-Like Growth Factor-1 Sustains Stem Cell–Mediated Renal Repair. Journal of the American Society of Nephrology: JASN, 2007, 18, 2921-2928.	6.1	294
4	<i>MYO1E</i> Mutations and Childhood Familial Focal Segmental Glomerulosclerosis. New England Journal of Medicine, 2011, 365, 295-306.	27.0	221
5	Protein traffic activates NF-kB gene signaling and promotes MCP-1–dependent interstitial inflammation. American Journal of Kidney Diseases, 2000, 36, 1226-1241.	1.9	145
6	Transforming Growth Factor- \hat{l}^21 Is Up-Regulated by Podocytes in Response to Excess Intraglomerular Passage of Proteins. American Journal of Pathology, 2002, 161, 2179-2193.	3.8	138
7	Blocking Angiotensin II Synthesis/Activity Preserves Glomerular Nephrin in Rats with Severe Nephrosis. Journal of the American Society of Nephrology: JASN, 2001, 12, 941-948.	6.1	122
8	Protein Overload Induces Fractalkine Upregulation in Proximal Tubular Cells through Nuclear Factor κB– and p38 Mitogen-Activated Protein Kinase–Dependent Pathways. Journal of the American Society of Nephrology: JASN, 2003, 14, 2436-2446.	6.1	118
9	Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy. Kidney International, 2004, 65, 2193-2200.	5.2	112
10	Proximal tubular cells promote fibrogenesis by TGF- $\hat{l}^21\hat{a}$ "mediated induction of peritubular myofibroblasts. Kidney International, 2002, 61, 2066-2077.	5.2	109
11	Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-κB dependent up-regulation of IL-8 and MCP-11. Kidney International, 2002, 62, 846-856.	5.2	105
12	Effect of combining ACE inhibitor and statin in severe experimental nephropathy. Kidney International, 2002, 61, 1635-1645.	5.2	103
13	Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Scientific Reports, 2017, 7, 11518.	3.3	89
14	Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Scientific Reports, 2015, 5, 8826.	3.3	88
15	MicroRNA-324-3p Promotes Renal Fibrosis and Is a Target of ACE Inhibition. Journal of the American Society of Nephrology: JASN, 2012, 23, 1496-1505.	6.1	84
16	Transcriptional Regulation of Nephrin Gene by Peroxisome Proliferator–Activated Receptor-γ Agonist: Molecular Mechanism of the Antiproteinuric Effect of Pioglitazone. Journal of the American Society of Nephrology: JASN, 2006, 17, 1624-1632.	6.1	76
17	Renal Expression of FGF23 in Progressive Renal Disease of Diabetes and the Effect of Ace Inhibitor. PLoS ONE, 2013, 8, e70775.	2.5	75
18	<i>Sirt3</i> Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by <i>Opa1</i> Gene Transfer. Antioxidants and Redox Signaling, 2019, 31, 1255-1271.	5.4	70

#	Article	IF	CITATIONS
19	Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Research, 2016, 17, 130-139.	0.7	65
20	CTLA4Ig Gene Transfer Prolongs Survival and Induces Donor-Specific Tolerance in a Rat Renal Allograft. Journal of the American Society of Nephrology: JASN, 2000, 11, 747-752.	6.1	64
21	Thymic Dendritic Cells Express Inducible Nitric Oxide Synthase and Generate Nitric Oxide in Response to Self- and Alloantigens. Journal of Immunology, 2000, 164, 4649-4658.	0.8	63
22	Complement-Mediated Dysfunction of Glomerular Filtration Barrier Accelerates Progressive Renal Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 1158-1167.	6.1	63
23	MicroRNA-184 is a downstream effector of albuminuria driving renal fibrosis in rats with diabetic nephropathy. Diabetologia, 2017, 60, 1114-1125.	6.3	54
24	Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology: JASN, 2014, 25, 1786-1798.	6.1	52
25	Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells. Journal of the American Society of Nephrology: JASN, 2016, 27, 1400-1411.	6.1	51
26	The Toll-IL-1R Member Tir8/SIGIRR Negatively Regulates Adaptive Immunity against Kidney Grafts. Journal of Immunology, 2009, 183, 4249-4260.	0.8	46
27	Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells. Scientific Reports, 2019, 9, 8001.	3.3	43
28	Targeted Downregulation of Extracellular Nephrin in Human IgA Nephropathy. American Journal of Nephrology, 2003, 23, 277-286.	3.1	41
29	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	3.8	39
30	COVID-19 and lombardy: TESTing the impact of the first wave of the pandemic. EBioMedicine, 2020, 61, 103069.	6.1	38
31	Regression of Renal Disease by Angiotensin II Antagonism Is Caused by Regeneration of Kidney Vasculature. Journal of the American Society of Nephrology: JASN, 2016, 27, 699-705.	6.1	36
32	Dendritic Cells Genetically Engineered with Adenoviral Vector Encoding dnlKK2 Induce the Formation of Potent CD4+ T-Regulatory Cells. Transplantation, 2005, 79, 1056-1061.	1.0	32
33	Adeno-Associated Virus–Mediated CTLA4Ig Gene Transfer Protects MHC-Mismatched Renal Allografts from Chronic Rejection. Journal of the American Society of Nephrology: JASN, 2006, 17, 1665-1672.	6.1	31
34	Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts. Stem Cell Reports, 2015, 4, 685-698.	4.8	27
35	Engineered Kidney Tubules for Modeling Patient-Specific Diseases and Drug Discovery. EBioMedicine, 2018, 33, 253-268.	6.1	27
36	DnIKK2-Transfected Dendritic Cells Induce a Novel Population of Inducible Nitric Oxide Synthase???Expressing CD4+CD25??? Cells with Tolerogenic Properties. Transplantation, 2007, 83, 474-484.	1.0	21

3

#	Article	IF	Citations
37	Nonviral and Viral Gene Transfer to the Kidney in the Context of Transplantation. Nephron, 2000, 85, 307-316.	1.8	14
38	Gene Therapy: How to Target the Kidney. Promises and Pitfalls. Current Gene Therapy, 2004, 4, 115-122.	2.0	14
39	Adenoviral-mediated gene transfer restores plasma ADAMTS13 antigen and activity in ADAMTS13 knockout mice. Gene Therapy, 2009, 16, 1373-1379.	4.5	13
40	Favorable Effect of Cotransfection with TGF- \hat{l}^2 and CTLA4lg of the Donor Kidney on Allograft Survival. American Journal of Nephrology, 2004, 24, 275-283.	3.1	12
41	Impediments to successful gene transfer to the kidney in the context of transplantation and how to overcome them. Kidney International, 2002, 61, S115-S119.	5.2	10
42	Role of ultrastructural determinants of glomerular permeability in ultrafiltration function loss. JCI Insight, 2020, 5, .	5.0	10
43	Post-translational modifications by SIRT3 de-2-hydroxyisobutyrylase activity regulate glycolysis and enable nephrogenesis. Scientific Reports, 2021, 11, 23580.	3.3	10
44	Post-Transcriptional Gene Regulation Makes Things Clearer in Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1026-1028.	6.1	8
45	Allograft Rejection: Acute and Chronic Studies. , 2008, 159, 122-134.		7
46	CRISPR-Cas9-Mediated Correction of the G189R-PAX2 Mutation in Induced Pluripotent Stem Cells from a Patient with Focal Segmental Glomerulosclerosis. CRISPR Journal, 2019, 2, 108-120.	2.9	4
47	Generation of two isogenic knockout PKD2 iPS cell lines, IRFMNi003-A-1 and IRFMNi003-A-2, using CRISPR/Cas9 technology. Stem Cell Research, 2020, 42, 101667.	0.7	3
48	Imaging the Kidney with an Unconventional Scanning Electron Microscopy Technique: Analysis of the Subpodocyte Space in Diabetic Mice. International Journal of Molecular Sciences, 2022, 23, 1699.	4.1	3
49	The Goal of Intragraft Gene Therapy. , 2004, 146, 143-150.		2
50	Unravelling the Role of PAX2 Mutation in Human Focal Segmental Glomerulosclerosis. Biomedicines, 2021, 9, 1808.	3.2	2
51	Generation of PKD1 mono-allelic and bi-allelic knockout iPS cell lines using CRISPR-Cas9 system. Stem Cell Research, 2020, 47, 101881.	0.7	1
52	AAV9-mediated engineering of autotransplanted kidney of non-human primates. Gene Therapy, 2017, 24, 308-313.	4.5	0
53	Generation of two isogenic iPS cell lines (IRFMNi002-A and IRFMNi002-B) from a patient affected by Focal Segmental Glomerulosclerosis carrying a heterozygous c.565G>A mutation in PAX2 gene. Stem Cell Research, 2018, 33, 175-179.	0.7	0
54	Therapeutic Options for Preventing Transplant-Related Progressive Renal and Vascular Injury. , 2008, , 128-136.		0