Olga Goransson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5846154/publications.pdf

Version: 2024-02-01

	230014	190340
4,225	27	53
citations	h-index	g-index
53	53	7366
docs citations	times ranked	citing authors
	4,225 citations 53 docs citations	4,225 27 citations h-index 53 53

#	Article	IF	CITATIONS
1	Knockout of the radical scavenger $\hat{l}\pm 1$ -microglobulin in mice results in defective bikunin synthesis, endoplasmic reticulum stress and increased body weight. Free Radical Biology and Medicine, 2021, 162, 160-170.	1.3	9
2	Comparable Initial Engagement of Intracellular Signaling Pathways by Parathyroid Hormone Receptor Ligands Teriparatide, Abaloparatide, and Longâ€Acting PTH. JBMR Plus, 2021, 5, e10441.	1.3	13
3	A-769662 inhibits adipocyte glucose uptake in an AMPK-independent manner. Biochemical Journal, 2021, 478, 633-646.	1.7	9
4	Differential DNA Methylation and Expression of miRNAs in Adipose Tissue From Twin Pairs Discordant for Type 2 Diabetes. Diabetes, 2021, 70, 2402-2418.	0.3	5
5	Investigation of the specificity and mechanism of action of the ULK1/AMPK inhibitor SBI-0206965. Biochemical Journal, 2021, 478, 2977-2997.	1.7	26
6	Persistent whole day meal effects of three dipeptidyl peptidaseâ€4 inhibitors on glycaemia and hormonal responses in metforminâ€treated type 2 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 590-598.	2.2	9
7	Inhibition of AMPK activity in response to insulin in adipocytes: involvement of AMPK pS485, PDEs, and cellular energy levels. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E459-E471.	1.8	5
8	JUP/plakoglobin is regulated by salt-inducible kinase 2, and is required for insulin-induced signalling and glucose uptake in adipocytes. Cellular Signalling, 2020, 76, 109786.	1.7	7
9	Inner ear is a target for insulin signaling and insulin resistance: evidence from mice and auditory HEI-OC1 cells. BMJ Open Diabetes Research and Care, 2020, 8, e000820.	1.2	10
10	EHD2 regulates adipocyte function and is enriched at cell surface–associated lipid droplets in primary human adipocytes. Molecular Biology of the Cell, 2019, 30, 1147-1159.	0.9	23
11	Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cellular Signalling, 2019, 57, 45-57.	1.7	18
12	Salt-inducible kinase 2 regulates TFEB and is required for autophagic flux in adipocytes. Biochemical and Biophysical Research Communications, 2019, 508, 775-779.	1.0	5
13	Insulin induces Thr484 phosphorylation and stabilization of SIK2 in adipocytes. Cellular Signalling, 2019, 55, 73-80.	1.7	4
14	Intact glucose uptake despite deteriorating signaling in adipocytes with high-fat feeding. Journal of Molecular Endocrinology, 2018, 60, 199-211.	1.1	22
15	Effect of singleâ€dose <scp>DPP</scp> â€4 inhibitor sitagliptin on βâ€cell function and incretin hormone secretion after meal ingestion in healthy volunteers and drugâ€naìve, wellâ€controlled type 2 diabetes subjects. Diabetes, Obesity and Metabolism, 2018, 20, 1080-1085.	2.2	16
16	AMPK activation by A-769662 and 991 does not affect catecholamine-induced lipolysis in human adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1075-E1085.	1.8	16
17	The Salt-Inducible Kinases: Emerging Metabolic Regulators. Trends in Endocrinology and Metabolism, 2018, 29, 827-840.	3.1	67
18	GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochemical Journal, 2017, 474, 983-1001.	1.7	84

#	Article	IF	CITATIONS
19	Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Scientific Reports, 2017, 7, 15011.	1.6	37
20	Salt-inducible kinase 2 and -3 are downregulated in adipose tissue from obese or insulin-resistant individuals: implications for insulin signalling and glucose uptake in human adipocytes. Diabetologia, 2017, 60, 314-323.	2.9	31
21	Rosiglitazone drives cavin-2/SDPR expression in adipocytes in a CEBPα-dependent manner. PLoS ONE, 2017, 12, e0173412.	1.1	10
22	SIKs control osteocyte responses to parathyroid hormone. Nature Communications, 2016, 7, 13176.	5.8	124
23	Transcriptional regulation of the miR-212/miR-132 cluster in insulin-secreting \hat{l}^2 -cells by cAMP-regulated transcriptional co-activator 1 and salt-inducible kinases. Molecular and Cellular Endocrinology, 2016, 424, 23-33.	1.6	46
24	HMGB1 binds to the rs7903146 locus in TCF7L2 in human pancreatic islets. Molecular and Cellular Endocrinology, 2016, 430, 138-145.	1.6	14
25	Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase. Cellular Signalling, 2016, 28, 204-213.	1.7	62
26	Salt-inducible kinase 2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes. Journal of Cell Science, 2015, 128, 472-86.	1.2	71
27	ApoA-I Milano stimulates lipolysis in adipose cells independently of cAMP/PKA activation. Journal of Lipid Research, 2015, 56, 2248-2259.	2.0	23
28	Detrusor Induction of miR-132/212 following Bladder Outlet Obstruction: Association with MeCP2 Repression and Cell Viability. PLoS ONE, 2015, 10, e0116784.	1.1	20
29	LKB1 signalling attenuates early events of adipogenesis and responds to adipogenic cues. Journal of Molecular Endocrinology, 2014, 53, 117-130.	1.1	22
30	The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nature Communications, 2014, 5, 4535.	5.8	131
31	Single injections of apoA-l acutely improve in vivo glucose tolerance in insulin-resistant mice. Diabetologia, 2014, 57, 797-800.	2.9	53
32	AMPK $\hat{l}\pm 1$ Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration. Cell Metabolism, 2013, 18, 251-264.	7.2	375
33	Cocaine- and Amphetamine-regulated Transcript (CART) Protects Beta Cells against Glucotoxicity and Increases Cell Proliferation. Journal of Biological Chemistry, 2013, 288, 3208-3218.	1.6	30
34	Stretch-Sensitive Down-Regulation of the miR-144/451 Cluster in Vascular Smooth Muscle and Its Role in AMP-Activated Protein Kinase Signaling. PLoS ONE, 2013, 8, e65135.	1.1	33
35	Survival of pancreatic beta cells is partly controlled by a TCF7L2-p53-p53INP1-dependent pathway. Human Molecular Genetics, 2012, 21, 196-207.	1.4	52
36	The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser358 in adipocytes. Biochemical Journal, 2012, 444, 503-514.	1.7	60

#	Article	IF	Citations
37	cAMP-elevation mediated by \hat{l}^2 -adrenergic stimulation inhibits salt-inducible kinase (SIK) 3 activity in adipocytes. Cellular Signalling, 2012, 24, 1863-1871.	1.7	34
38	Adipocyte-Specific Protein Tyrosine Phosphatase 1B Deletion Increases Lipogenesis, Adipocyte Cell Size and Is a Minor Regulator of Glucose Homeostasis. PLoS ONE, 2012, 7, e32700.	1.1	54
39	Identification of New Signaling Components in the Sensory Epithelium of Human Saccule. Frontiers in Neurology, 2011, 2, 48.	1.1	12
40	Regulation of AMPâ€activated protein kinase by LKB1 and CaMKK in adipocytes. Journal of Cellular Biochemistry, 2011, 112, 1364-1375.	1.2	68
41	Rose hip exerts antidiabetic effects via a mechanism involving downregulation of the hepatic lipogenic program. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E111-E121.	1.8	15
42	Protein kinase B activity is required for the effects of insulin on lipid metabolism in adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E635-E646.	1.8	101
43	Regulation of AMP-activated protein kinase by cAMP in adipocytes: Roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cellular Signalling, 2009, 21, 760-766.	1.7	132
44	Use of Akt Inhibitor and a Drug-resistant Mutant Validates a Critical Role for Protein Kinase B/Akt in the Insulin-dependent Regulation of Glucose and System A Amino Acid Uptake. Journal of Biological Chemistry, 2008, 283, 27653-27667.	1.6	96
45	Mechanism of Action of A-769662, a Valuable Tool for Activation of AMP-activated Protein Kinase. Journal of Biological Chemistry, 2007, 282, 32549-32560.	1.6	376
46	Regulation of the polarity kinases PAR-1/MARK by 14-3-3 interaction and phosphorylation. Journal of Cell Science, 2006, 119, 4059-4070.	1.2	61
47	14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. Journal of Cell Science, 2005, 118, 5661-5673.	1.2	94
48	Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E310-E317.	1.8	273
49	LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO Journal, 2004, 23, 833-843.	3.5	1,201
50	Dimethylaminopurine inhibits metabolic effects of insulin in primary adipocytes. Journal of Nutritional Biochemistry, 2004, 15, 303-312.	1.9	4
51	Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cellular Signalling, 2002, 14, 231-238.	1.7	124
52	Ser-474 is the major target of insulin-mediated phosphorylation of protein kinase B \hat{l}^2 in primary rat adipocytes. Cellular Signalling, 2002, 14, 175-182.	1.7	7
53	Insulin-Induced Translocation of Protein Kinase B to the Plasma Membrane in Rat Adipocytes. Biochemical and Biophysical Research Communications, 1998, 246, 249-254.	1.0	31