
Jong-Seong Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584563/publications.pdf Version: 2024-02-01

IONG-SEONG LEON

#	Article	IF	CITATIONS
1	Tâ€ÐNA insertional mutagenesis for functional genomics in rice. Plant Journal, 2000, 22, 561-570.	5.7	711
2	The Senescence-Induced Staygreen Protein Regulates Chlorophyll Degradation. Plant Cell, 2007, 19, 1649-1664.	6.6	475
3	Starch biosynthesis in cereal endosperm. Plant Physiology and Biochemistry, 2010, 48, 383-392.	5.8	410
4	leafy hull sterile1 Is a Homeotic Mutation in a Rice MADS Box Gene Affecting Rice Flower Development. Plant Cell, 2000, 12, 871-884.	6.6	321
5	The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Molecular Biology, 2010, 72, 557-566.	3.9	255
6	A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Reports, 2006, 25, 836-847.	5.6	243
7	The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. Journal of Plant Physiology, 2010, 167, 1512-1520.	3.5	240
8	Rice <i>Pi5</i> -Mediated Resistance to <i>Magnaporthe oryzae</i> Requires the Presence of Two Coiled-Coil–Nucleotide-Binding–Leucine-Rich Repeat Genes. Genetics, 2009, 181, 1627-1638.	2.9	239
9	Identification of class B and class C floral organ identity genes from rice plants. Plant Molecular Biology, 1998, 38, 1021-1029.	3.9	228
10	Towards Establishment of a Rice Stress Response Interactome. PLoS Genetics, 2011, 7, e1002020.	3.5	199
11	Impaired Function of the Tonoplast-Localized Sucrose Transporter in Rice, <i>OsSUT2</i> , Limits the Transport of Vacuolar Reserve Sucrose and Affects Plant Growth Â. Plant Physiology, 2011, 157, 109-119.	4.8	194
12	Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Molecular Biology, 2007, 65, 531-546.	3.9	178
13	Comparative genomics identifies the <i><scp>M</scp>agnaporthe oryzae</i> avirulence effector <i><scp>A</scp>vr<scp>P</scp>i9</i> that triggers <i><scp>P</scp>i9</i> â€mediated blast resistance in rice. New Phytologist, 2015, 206, 1463-1475.	7.3	169
14	Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium <i>Synechocystis</i> sp. PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10780-10785.	7.1	162
15	Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza) Tj ETQq1	1 0. <u>78</u> 4314	rgBT /Overic
16	Role of the Rice Hexokinases <i>OsHXK5</i> and <i>OsHXK6</i> as Glucose Sensors Â. Plant Physiology, 2009, 149, 745-759.	4.8	155
17	HDA19 is required for the repression of salicylic acid biosynthesis and salicylic acidâ€mediated defense responses in Arabidopsis. Plant Journal, 2012, 71, 135-146.	5.7	154
18	DELLA Proteins and Their Interacting RING Finger Proteins Repress Gibberellin Responses by Binding to the Promoters of a Subset of Gibberellin-Responsive Genes in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 927-943.	6.6	145

5

#	Article	IF	CITATIONS
19	Determination of the Motif Responsible for Interaction between the Rice APETALA1/AGAMOUS-LIKE9 Family Proteins Using a Yeast Two-Hybrid System1. Plant Physiology, 1999, 120, 1193-1204.	4.8	138
20	Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta, 2006, 224, 598-611.	3.2	133
21	Biofortification of crops for reducing malnutrition. Plant Biotechnology Reports, 2012, 6, 195-202.	1.5	125
22	Tissue-Preferential Expression of a Rice α-Tubulin Gene,OsTubA1, Mediated by the First Intron1. Plant Physiology, 2000, 123, 1005-1014.	4.8	124
23	Sucrose signaling in higher plants. Plant Science, 2021, 302, 110703.	3.6	117
24	Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Molecular Biology, 1999, 39, 35-44.	3.9	107
25	A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11856-11861.	7.1	107
26	Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in <i>Arabidopsis thaliana</i> . New Phytologist, 2011, 190, 101-112.	7.3	107
27	Title is missing!. Molecular Breeding, 2000, 6, 581-592.	2.1	101
28	OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice. Molecules and Cells, 2009, 27, 67-74.	2.6	98
29	The Monocot-Specific Receptor-like Kinase SDS2 Controls Cell Death and Immunity in Rice. Cell Host and Microbe, 2018, 23, 498-510.e5.	11.0	96
30	OsWRKY42 Represses OsMT1d and Induces Reactive Oxygen Species and Leaf Senescence in Rice. Molecules and Cells, 2014, 37, 532-539.	2.6	90
31	Rice Transcription Factor OsDOF11 Modulates Sugar Transport by Promoting Expression of Sucrose Transporter and SWEET Genes. Molecular Plant, 2018, 11, 833-845.	8.3	90
32	The Mechanism of Phloem Loading in Rice (Oryza sativa). Molecules and Cells, 2012, 33, 431-438.	2.6	88
33	Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synthesis in rice pollen grains and cause male sterility. Journal of Experimental Botany, 2016, 67, 5557-5569.	4.8	88
34	Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa) Tj ETQq0 0 () rgBT /Ove	erlogk 10 Tf
35	Rice Mitogen-Activated Protein Kinase Interactome Analysis Using the Yeast Two-Hybrid System Â. Plant Physiology, 2012, 160, 477-487.	4.8	81

³⁶Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnology Reports,
2016, 10, 13-23.1.580

#	Article	IF	CITATIONS
37	Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta, 2003, 217, 904-911.	3.2	76
38	Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature Communications, 2020, 11, 5845.	12.8	75
39	β-Glucosidases: Multitasking, moonlighting or simply misunderstood?. Plant Science, 2015, 241, 246-259.	3.6	74
40	Loss of cytosolic fructoseâ€1,6â€bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (<i>Oryza sativa</i>). Plant, Cell and Environment, 2008, 31, 1851-1863.	5.7	73
41	OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice. Plant Molecular Biology, 2019, 101, 471-486.	3.9	71
42	Proteomic analysis of the response ofArabidopsis chloroplast proteins to high light stress. Proteomics, 2004, 4, 3560-3568.	2.2	70
43	Expression analysis and functional characterization of the monosaccharide transporters, <i>OsTMTs</i> , involving vacuolar sugar transport in rice (<i>Oryza sativa</i>). New Phytologist, 2010, 186, 657-668.	7.3	69
44	Roles of Sugars in Controlling Flowering Time. Journal of Plant Biology, 2018, 61, 121-130.	2.1	68
45	Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance. Molecules and Cells, 2009, 28, 431-440.	2.6	67
46	OsRAR1 and OsSGT1 Physically Interact and Function in Rice Basal Disease Resistance. Molecular Plant-Microbe Interactions, 2008, 21, 294-303.	2.6	66
47	Activation of Rice Yellow Stripe1-Like 16 (OsYSL16) Enhances Iron Efficiency. Molecules and Cells, 2012, 33, 117-126.	2.6	64
48	Engineering rice with lower grain arsenic. Plant Biotechnology Journal, 2018, 16, 1691-1699.	8.3	64
49	Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars. Nature Communications, 2020, 11, 2819.	12.8	62
50	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406.	5.8	60
51	Creation of Resveratrol-Enriched Rice for the Treatment of Metabolic Syndrome and Related Diseases. PLoS ONE, 2013, 8, e57930.	2.5	60
52	Sucrose transport from source to sink seeds in rice. Physiologia Plantarum, 2006, 126, 572-584.	5.2	57
53	Gene tagging in rice: a high throughput system for functional genomics. Plant Science, 2001, 161, 211-219.	3.6	54
54	A novel protein phosphatase indirectly regulates phytochrome-interacting factor 3 via phytochrome. Biochemical Journal, 2008, 415, 247-255.	3.7	53

#	Article	IF	CITATIONS
55	Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. Photosynthesis Research, 2012, 111, 261-268.	2.9	50
56	Nicotianamine Synthesis by OsNAS3 Is Important for Mitigating Iron Excess Stress in Rice. Frontiers in Plant Science, 2019, 10, 660.	3.6	50
57	OsWRKY67 Plays a Positive Role in Basal and XA21-Mediated Resistance in Rice. Frontiers in Plant Science, 2017, 8, 2220.	3.6	49
58	Genetic and Molecular Insights into the Enhancement of Rice Yield Potential. Journal of Plant Biology, 2011, 54, 1-9.	2.1	48
59	Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theoretical and Applied Genetics, 2004, 109, 978-985.	3.6	46
60	The HSP90-SGT1-RAR1 molecular chaperone complex: A core modulator in plant immunity. Journal of Plant Biology, 2008, 51, 1-10.	2.1	43
61	Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice. Molecular Plant, 2021, 14, 253-266.	8.3	43
62	OsWRKY30 is a transcription activator that enhances rice resistance to the Xanthomonas oryzae pathovar oryzae. Journal of Plant Biology, 2013, 56, 258-265.	2.1	42
63	Rice Os9BGlu31 Is a Transglucosidase with the Capacity to Equilibrate Phenylpropanoid, Flavonoid, and Phytohormone Glycoconjugates. Journal of Biological Chemistry, 2013, 288, 10111-10123.	3.4	42
64	Transcriptome analysis of leaf and root of rice seedling to acute dehydration. Rice, 2013, 6, 38.	4.0	42
65	Proteomics of Rice—Magnaporthe oryzae Interaction: What Have We Learned So Far?. Frontiers in Plant Science, 2019, 10, 1383.	3.6	42
66	Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice. Plant Science, 2019, 289, 110273.	3.6	41
67	Xanthomonas oryzae pv. oryzae Type III Effector XopN Targets OsVOZ2 and a Putative Thiamine Synthase as a Virulence Factor in Rice. PLoS ONE, 2013, 8, e73346.	2.5	40
68	Altered Expression of Pyrophosphate: Fructose-6-Phosphate 1-Phosphotransferase Affects the Growth of Transgenic Arabidopsis Plants. Molecules and Cells, 2009, 27, 641-650.	2.6	39
69	Pathogen-Associated Molecular Pattern-Triggered Immunity Involves Proteolytic Degradation of Core Nonsense-Mediated mRNA Decay Factors During the Early Defense Response. Plant Cell, 2020, 32, 1081-1101.	6.6	39
70	Lossâ€ofâ€function of <scp>O</scp> s <scp>STN</scp> 8 suppresses the photosystemÂ <scp>II</scp> core protein phosphorylation and interferes with the photosystemÂ <scp>II</scp> repair mechanism in rice (<i><scp>O</scp>ryza sativa</i>). Plant Journal, 2013, 76, 675-686.	5.7	38
71	Role of rice cytosolic hexokinase <i>OsHXK7</i> in sugar signaling and metabolism. Journal of Integrative Plant Biology, 2016, 58, 127-135.	8.5	38
72	<i>OsMPK6</i> plays a critical role in cell differentiation during early embryogenesis in <i>Oryza sativa</i> . Journal of Experimental Botany, 2016, 67, 2425-2437.	4.8	37

#	Article	IF	CITATIONS
73	The identification of candidate rice genes that confer resistance to the brown planthopper (Nilaparvata lugens) through representational difference analysis. Theoretical and Applied Genetics, 2007, 115, 537-547.	3.6	36
74	A Systematic View of the MLO Family in Rice Suggests Their Novel Roles in Morphological Development, Diurnal Responses, the Light-Signaling Pathway, and Various Stress Responses. Frontiers in Plant Science, 2016, 7, 1413.	3.6	36
75	Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in common bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus. Molecular Plant Pathology, 2007, 8, 151-162.	4.2	34
76	Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae. Plant Science, 2010, 179, 466-471.	3.6	34
77	Molecular insights into the function of ankyrin proteins in plants. Journal of Plant Biology, 2015, 58, 271-284.	2.1	34
78	Genetic complementation analysis of rice sucrose transporter genes in Arabidopsis SUC2 mutant atsuc2. Journal of Plant Biology, 2016, 59, 231-237.	2.1	31
79	Recombinant Expression and Characterization of the Cytoplasmic Rice β-Glucosidase Os1BGlu4. PLoS ONE, 2014, 9, e96712.	2.5	30
80	Identification of phytochrome-interacting protein candidates inArabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS. Proteomics, 2006, 6, 3671-3680.	2.2	29
81	Genome-wide Analysis of Root Hair Preferred RBOH Genes Suggests that Three RBOH Genes are Associated with Auxin-mediated Root Hair Development in Rice. Journal of Plant Biology, 2019, 62, 229-238.	2.1	29
82	Analysis of a Triose Phosphate/Phosphate Translocator-Deficient Mutant Reveals a Limited Capacity for Starch Synthesis in Rice Leaves. Molecular Plant, 2014, 7, 1705-1708.	8.3	28
83	Deficiency of rice hexokinase HXK5 impairs synthesis and utilization of starch in pollen grains and causes male sterility. Journal of Experimental Botany, 2020, 71, 116-125.	4.8	28
84	Genetic Variation and Evolution of the Pi9 Blast Resistance Locus in the AA Genome Oryza Species. Journal of Plant Biology, 2011, 54, 294-302.	2.1	27
85	Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. Plant Science, 2015, 240, 79-89.	3.6	26
86	Proteomics and Metabolomics Studies on the Biotic Stress Responses of Rice: an Update. Rice, 2021, 14, 30.	4.0	26
87	Web Tools for Rice Transcriptome Analyses. Journal of Plant Biology, 2011, 54, 65-80.	2.1	25
88	Chromatin interacting factor Os <scp>VIL</scp> 2 increases biomass and rice grain yield. Plant Biotechnology Journal, 2019, 17, 178-187.	8.3	25
89	OsMAPKKK63 is involved in salt stress response and seed dormancy control. Plant Signaling and Behavior, 2019, 14, e1578633.	2.4	25
90	Loss of Function of Rice Plastidic Glycolate/Glycerate Translocator 1 Impairs Photorespiration and Plant Growth. Frontiers in Plant Science, 2019, 10, 1726.	3.6	25

#	Article	IF	CITATIONS
91	A Small GTPase Activator Protein Interacts with Cytoplasmic Phytochromes in Regulating Root Development. Journal of Biological Chemistry, 2010, 285, 32151-32159.	3.4	24
92	Identification and Characterization of the Duplicate Rice Sucrose Synthase Genes OsSUS5 and OsSUS7 Which Are Associated with the Plasma Membrane. Molecules and Cells, 2011, 31, 553-562.	2.6	24
93	Demonstration of monolignol β-glucosidase activity of rice Os4BGlu14, Os4BGlu16 and Os4BGlu18 in Arabidopsis thaliana bglu45 mutant. Plant Physiology and Biochemistry, 2018, 127, 223-230.	5.8	24
94	The effect of DTT in protein preparations for proteomic analysis: Removal of a highly abundant plant enzyme, ribulose bisphosphate carboxylase/oxygenase. Journal of Plant Biology, 2008, 51, 297-301.	2.1	23
95	Constitutive activation of brassinosteroid signaling in the Arabidopsis elongated-D/bak1 mutant. Plant Molecular Biology, 2012, 80, 489-501.	3.9	23
96	Development of an Efficient Inverse PCR Method for Isolating Gene Tags from T-DNA Insertional Mutants in Rice. Methods in Molecular Biology, 2011, 678, 139-146.	0.9	21
97	Molecular characterization and physico-chemical analysis of a new giant embryo mutant allele (ge t) in rice (Oryza sativa L.). Genes and Genomics, 2009, 31, 277-282.	1.4	20
98	Iron homeostasis and fortification in rice. Journal of Plant Biology, 2012, 55, 261-267.	2.1	19
99	Construction and Application of Efficient <i>Acâ€Ðs</i> Transposon Tagging Vectors in Rice. Journal of Integrative Plant Biology, 2009, 51, 982-992.	8.5	18
100	Conserved Function of Fibrillin5 in the Plastoquinone-9 Biosynthetic Pathway in Arabidopsis and Rice. Frontiers in Plant Science, 2017, 8, 1197.	3.6	18
101	Development of near-isogenic Japonica rice lines with enhanced resistance to Magnaporthe grisea. Molecules and Cells, 2008, 25, 407-16.	2.6	18
102	Morphological and molecular characterization of a new frizzy panicle mutant, "fzp-9(t)â€, in rice (Oryza sativa L.). Hereditas, 2006, 142, 92-97.	1.4	17
103	Evidence for a role of hexokinases as conserved glucose sensors in both monocot and dicot plant species. Plant Signaling and Behavior, 2009, 4, 908-910.	2.4	17
104	OsREL2, a rice TOPLESS homolog functions in axillary meristem development in rice inflorescence. Plant Biotechnology Reports, 2012, 6, 213-224.	1.5	17
105	A rice sucrose non-fermenting-1 related protein kinase 1, OSK35, plays an important role in fungal and bacterial disease resistance. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58, 669-675.	0.9	17
106	Cytokinin increases vegetative growth period by suppressing florigen expression in rice and maize. Plant Journal, 2022, 110, 1619-1635.	5.7	17
107	Transgenic Arabidopsis plants expressing Escherichia coli pyrophosphatase display both altered carbon partitioning in their source leaves and reduced photosynthetic activity. Plant Cell Reports, 2005, 24, 374-382.	5.6	16
108	Two novel protein kinase genes,OsMSRPK1 andOsMSURPK2, are regulated by diverse environmental stresses in rice. Journal of Plant Biology, 2006, 49, 247-256.	2.1	16

#	Article	IF	CITATIONS
109	Molecular tagging of the Bph1 locus for resistance to brown planthopper (Nilaparvata lugens Stål) through representational difference analysis. Molecular Genetics and Genomics, 2008, 280, 163-172.	2.1	15
110	Characterization of Arabidopsis RopCEF family genes in response to abiotic stresses. Plant Biotechnology Reports, 2009, 3, 183-190.	1.5	15
111	FSTVAL: a new web tool to validate bulk flanking sequence tags. Plant Methods, 2012, 8, 19.	4.3	15
112	Crosstalk between diurnal rhythm and water stress reveals an altered primary carbon flux into soluble sugars in drought-treated rice leaves. Scientific Reports, 2017, 7, 8214.	3.3	15
113	Review: Crucial role of inorganic pyrophosphate in integrating carbon metabolism from sucrose breakdown to starch synthesis in rice endosperm. Plant Science, 2020, 298, 110572.	3.6	15
114	Intragenic control of expression of a rice MADS box gene OsMADS1. Molecules and Cells, 2008, 26, 474-80.	2.6	15
115	Influence of Climate Change on Flowering Time. Journal of Plant Biology, 2021, 64, 193-203.	2.1	14
116	Enhanced resistance of PsbS-deficient rice (Oryza sativa L.) to fungal and bacterial pathogens. Journal of Plant Biology, 2016, 59, 616-626.	2.1	13
117	Lack of a Cytoplasmic RLK, Required for ROS Homeostasis, Induces Strong Resistance to Bacterial Leaf Blight in Rice. Frontiers in Plant Science, 2018, 9, 577.	3.6	13
118	Genome-wide Identification, Expression Profiling and Promoter Analysis of Trehalose-6-Phosphate Phosphatase Gene Family in Rice. Journal of Plant Biology, 2021, 64, 55-71.	2.1	13
119	The Role of Rice Vacuolar Invertase2 in Seed Size Control. Molecules and Cells, 2019, 42, 711-720.	2.6	13
120	Comparative proteomic analysis of blue light signaling components in the Arabidopsis cryptochrome 1 mutant. Molecules and Cells, 2007, 23, 154-60.	2.6	13
121	Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice. Molecules and Cells, 2019, 42, 858-868.	2.6	12
122	A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Molecular Plant Pathology, 2022, 23, 400-416.	4.2	12
123	Development of an Efficient Agrobacterium-Mediated Transformation System and Production of Herbicide-Resistant Transgenic Plants in Garlic (Allium sativum L.). Molecules and Cells, 2013, 36, 158-162.	2.6	11
124	Differential Requirement of Oryza sativa RAR1 in Immune Receptor-Mediated Resistance of Rice to Magnaporthe oryzae. Molecules and Cells, 2013, 35, 327-334.	2.6	11
125	Proteomic analysis of the rice endosperm starch-deficient mutants osagps2 and osagpl2. Journal of Plant Biology, 2015, 58, 252-258.	2.1	11
126	Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings. Plant Biotechnology Reports, 2010, 4, 281-291.	1.5	10

#	Article	IF	CITATIONS
127	Rice BiP3 regulates immunity mediated by the PRRs XA3 and XA21 but not immunity mediated by the NB-LRR protein, Pi5. Biochemical and Biophysical Research Communications, 2014, 448, 70-75.	2.1	10
128	Rice β-Glucosidase Os12BGlu38 is Required for Synthesis of Intine Cell Wall and Pollen Fertility. Journal of Experimental Botany, 2021, , .	4.8	10
129	Identification of a 20-bp regulatory element of the Arabidopsis pyrophosphate:fructose-6-phosphate 1-phosphotransferase I±2 gene that is essential for expression. Plant Cell Reports, 2007, 26, 683-692.	5.6	9
130	Defense Response to Pathogens Through Epigenetic Regulation in Rice. Journal of Plant Biology, 2018, 61, 1-10.	2.1	9
131	CTP synthase is essential for early endosperm development by regulating nuclei spacing. Plant Biotechnology Journal, 2021, 19, 2177-2191.	8.3	9
132	Microarray Analysis of bacterial blight resistance 1 mutant rice infected with Xanthomonas oryzae pv. oryzae. Plant Breeding and Biotechnology, 2013, 1, 354-365.	0.9	9
133	Carbon-partitioning inArabidopsis is regulated by the fructose 6-phosphate, 2-kinase/fructose 2,6-bisphosphatase enzyme. Journal of Plant Biology, 2006, 49, 70-79.	2.1	8
134	Altered sucrose synthesis in rice plants with reduced activity of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase. Journal of Plant Biology, 2007, 50, 38-43.	2.1	8
135	Proteomic analysis of rice mutants susceptible to Magnaporthe oryzae. Plant Biotechnology Reports, 2009, 3, 167-174.	1.5	8
136	Expression and functional analysis of rice plastidic maltose transporter, OsMEX1. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 149-155.	0.9	8
137	Identification of Fatty Acid Glucose Esters as Os9BGlu31 Transglucosidase Substrates in Rice Flag Leaves. Journal of Agricultural and Food Chemistry, 2015, 63, 9764-9769.	5.2	8
138	EARLY STARVATION 1 Is a Functionally Conserved Protein Promoting Gravitropic Responses in Plants by Forming Starch Granules. Frontiers in Plant Science, 2021, 12, 628948.	3.6	8
139	High Light Acclimation Mechanisms Deficient in a PsbS-Knockout Arabidopsis Mutant. International Journal of Molecular Sciences, 2022, 23, 2695.	4.1	8
140	The Molecular Mechanisms of Rice Resistance to the Bacterial Blight Pathogen, Xanthomonas oryzae pathovar oryzae. Advances in Botanical Research, 2011, 60, 51-87.	1.1	7
141	In Silico and Transcription Analysis of Trehalose-6-phosphate Phosphatase Gene Family of Wheat: Trehalose Synthesis Genes Contribute to Salinity, Drought Stress and Leaf Senescence. Genes, 2021, 12, 1652.	2.4	7
142	The PHY domain is required for conformational stability and spectral integrity of the bacteriophytochrome from Deinococcus radiodurans. Biochemical and Biophysical Research Communications, 2008, 369, 1120-1124.	2.1	6
143	Development of a Simple and Efficient System for Excising Selectable Markers in Arabidopsis Using a Minimal Promoter:: Cre Fusion Construct. Molecules and Cells, 2012, 33, 61-70.	2.6	6
144	Isolation of a novel protein phosphatase2C in rice and its response to gibberellin. Biochemical and Biophysical Research Communications, 2018, 503, 1987-1992.	2.1	6

#	Article	IF	CITATIONS
145	Action of Multiple Rice β-Glucosidases on Abscisic Acid Glucose Ester. International Journal of Molecular Sciences, 2021, 22, 7593.	4.1	6
146	Analysis of carbon metabolism in transgenicArabidopsis thaliana transformed with the cyanobacterial sucrose phosphate synthase gene. Journal of Plant Biology, 2004, 47, 42-47.	2.1	5
147	A Systemic View of Carbohydrate Metabolism in Rice to Facilitate Productivity. Plants, 2021, 10, 1690.	3.5	5
148	Identification of Genes and MicroRNAs Affecting Pre-harvest Sprouting in Rice (Oryza sativa L.) by Transcriptome and Small RNAome Analyses. Frontiers in Plant Science, 2021, 12, 727302.	3.6	5
149	Role of OsCZMT1 in Na+ and Mg2+ transport and salinity insensitivity. Environmental and Experimental Botany, 2022, 194, 104754.	4.2	5
150	Pi5 and Pii Paired NLRs Are Functionally Exchangeable and Confer Similar Disease Resistance Specificity. Molecules and Cells, 2019, 42, 637-645.	2.6	4
151	Establishment and application of the yeast two-hybrid (Y2H)-based plant interactome for investigation of gene functions. Journal of Plant Biology, 2013, 56, 367-374.	2.1	3
152	A modified transient gene expression protocol for subcellular protein localization analysis in rice. Plant Biotechnology Reports, 2020, 14, 131-138.	1.5	3
153	Characterization of Burkholderia glumae Putative Virulence Factor 11 (PVF11) via Yeast Two-Hybrid Interaction and Phenotypic Analysis. Plant Pathology Journal, 2019, 35, 280-286.	1.7	3
154	Resistance Genes and Their Effects to Blast in Korean Rice Varieties (Oryza sativa L.). , 2009, , 291-304.		2
155	Differential role for BiP3 in rice immune receptor-mediated resistance. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57, 539-542.	0.9	2
156	Construction and application of functional gene modules to regulatory pathways in rice. Journal of Plant Biology, 2017, 60, 358-379.	2.1	2
157	Functional conservation of MtFPA, a nucleus-localized RNA-recognition motif-binding protein that regulates flowering time in Medicago truncatula. Plant Biotechnology Reports, 2018, 12, 39-46.	1.5	2
158	Use of Nipponbare BAC Clones for Physical Mapping of an <i>R</i> Gene Locus in Rice. , 2007, 354, 45-56.		1
159	Rice protein-binding microarrays: a tool to detect cis-acting elements near promoter regions in rice. Planta, 2021, 253, 40.	3.2	1
160	Rice functional genomics using T-DNA mutants. Journal of Plant Biotechnology, 2010, 37, 133-143.	0.4	1
161	Development of a Temperate Climate-Adapted indica Multi-stress Tolerant Rice Variety by Pyramiding Quantitative Trait Loci. Rice, 2022, 15, 22.	4.0	1
162	Identification of a module of HAP transcription factors for seed development in rice. Plant Biotechnology Reports, 2019, 13, 389-397.	1.5	0

#	Article	IF	CITATIONS
163	Tools for Gene Tagging and Mutagenesis. , 0, , .		0
164	Roles of the Residues Lys115 and Tyr116 in the Binding of an Allosteric Inhibitor AMP to Pea Cytosolic Fructose-1,6-bisphosphatase. Journal of Applied Biological Chemistry, 2008, 51, 45-49.	0.4	0